Monolayer graphene oxide-Au loaded compound (GO-Au) as a flexible, stable and sensitive SERS active substrate for detection of stonehouse clam toxin (STX)

单层 石墨烯 基质(水族馆) 氧化物 材料科学 纳米技术 化学 冶金 生物 生态学
作者
Lijun Yin,Peipei Xu,Junjie Ren,Jing Shi,Runbing Huang,Yunzhen Liu,Yudong Lu,Ruiyun You
出处
期刊:Journal of Food Composition and Analysis [Elsevier]
卷期号:133: 106484-106484 被引量:5
标识
DOI:10.1016/j.jfca.2024.106484
摘要

Stonehouse clam toxin (STX) is a prevalent neuroparalytic toxin found among shellfish toxins. When consumed by humans, it disrupts neuronal conduction, potentially leading to quadriplegia, headache, shock, and even respiratory failure-induced death. This study introduces a highly sensitive and specific method for detecting shellfish toxins. The approach involves utilizing graphene gold-loaded compounds alongside stone house clam toxin aptamers and their complementary chains. The layered structure of graphene creates numerous hot spots among nanoparticles, while its arched spatial configuration offers an enhanced specific surface area, resulting in improved Surface-Enhanced Raman Scattering (SERS). By combining the signaling molecule Bodipy R6G-modified Apt with GO-Au loading compounds, distinctive Raman characteristic peaks emerge. Due to the strong affinity between Apt and STX, the Apt carrying the signaling molecule migrates away from the SERS aptamer probe's surface, thereby attenuating the original SERS signal intensity and facilitating ultra-sensitive shellfish toxin detection. The detection limit for the toxin was determined to be 5.47 nM, with a recovery rate ranging from 97.60% to 108.32%, affirming the applicability of this design for quantitative and specific shellfish toxin detection, signifying its considerable practical significance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小T儿发布了新的文献求助10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
cjl应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
核桃应助科研通管家采纳,获得30
1秒前
Hello应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
能干巨人应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
核桃应助科研通管家采纳,获得30
1秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
Criminology34应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
Criminology34应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
2秒前
momo应助科研通管家采纳,获得10
2秒前
2秒前
CodeCraft应助宋礼采纳,获得10
2秒前
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711679
求助须知:如何正确求助?哪些是违规求助? 5205113
关于积分的说明 15264986
捐赠科研通 4863917
什么是DOI,文献DOI怎么找? 2611005
邀请新用户注册赠送积分活动 1561363
关于科研通互助平台的介绍 1518685