亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Exploring the Potential of Variational Autoencoders for Modeling Nonlinear Relationships in Psychological Data

非线性系统 计算机科学 人工智能 心理学 算法 机器学习 应用数学 数学 物理 量子力学
作者
Nicola Milano,Monica Casella,Raymond G. Esposito,‎Davide Marocco
出处
期刊:Behavioral sciences [MDPI AG]
卷期号:14 (7): 527-527
标识
DOI:10.3390/bs14070527
摘要

Latent variables analysis is an important part of psychometric research. In this context, factor analysis and other related techniques have been widely applied for the investigation of the internal structure of psychometric tests. However, these methods perform a linear dimensionality reduction under a series of assumptions that could not always be verified in psychological data. Predictive techniques, such as artificial neural networks, could complement and improve the exploration of latent space, overcoming the limits of traditional methods. In this study, we explore the latent space generated by a particular artificial neural network: the variational autoencoder. This autoencoder could perform a nonlinear dimensionality reduction and encourage the latent features to follow a predefined distribution (usually a normal distribution) by learning the most important relationships hidden in data. In this study, we investigate the capacity of autoencoders to model item-factor relationships in simulated data, which encompasses linear and nonlinear associations. We also extend our investigation to a real dataset. Results on simulated data show that the variational autoencoder performs similarly to factor analysis when the relationships among observed and latent variables are linear, and it is able to reproduce the factor scores. Moreover, results on nonlinear data show that, differently than factor analysis, it can also learn to reproduce nonlinear relationships among observed variables and factors. The factor score estimates are also more accurate with respect to factor analysis. The real case results confirm the potential of the autoencoder in reducing dimensionality with mild assumptions on input data and in recognizing the function that links observed and latent variables.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
W陈完成签到,获得积分10
2秒前
了了完成签到,获得积分10
6秒前
Akim应助星辰大海采纳,获得10
9秒前
领导范儿应助xiaolu采纳,获得10
17秒前
盼风思月应助科研通管家采纳,获得10
18秒前
领导范儿应助ywy采纳,获得10
31秒前
31秒前
Eatanicecube完成签到,获得积分10
32秒前
凉白开发布了新的文献求助10
35秒前
忧郁的火车完成签到,获得积分10
40秒前
柳行天完成签到 ,获得积分10
43秒前
CodeCraft应助凉白开采纳,获得10
47秒前
54秒前
54秒前
菜根谭发布了新的文献求助10
58秒前
mosisa关注了科研通微信公众号
1分钟前
王小丫发布了新的文献求助10
1分钟前
润润润完成签到 ,获得积分10
1分钟前
1分钟前
xiaolu完成签到,获得积分10
1分钟前
美美发布了新的文献求助10
1分钟前
共享精神应助王小丫采纳,获得10
1分钟前
璨澄完成签到 ,获得积分10
1分钟前
王小丫完成签到,获得积分10
1分钟前
villanelle完成签到 ,获得积分10
1分钟前
浮游应助美美采纳,获得10
1分钟前
1分钟前
1分钟前
Muhammad完成签到,获得积分10
1分钟前
xjy2333完成签到,获得积分20
1分钟前
1分钟前
Muhammad发布了新的文献求助10
1分钟前
凉白开发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
浮游应助凉白开采纳,获得10
2分钟前
2分钟前
2分钟前
Fishchips发布了新的文献求助10
2分钟前
2分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5346018
求助须知:如何正确求助?哪些是违规求助? 4480788
关于积分的说明 13946796
捐赠科研通 4378437
什么是DOI,文献DOI怎么找? 2405839
邀请新用户注册赠送积分活动 1398390
关于科研通互助平台的介绍 1371004