Exploring the Potential of Variational Autoencoders for Modeling Nonlinear Relationships in Psychological Data

非线性系统 计算机科学 人工智能 心理学 算法 机器学习 应用数学 数学 物理 量子力学
作者
Nicola Milano,Monica Casella,Raymond G. Esposito,‎Davide Marocco
出处
期刊:Behavioral sciences [Multidisciplinary Digital Publishing Institute]
卷期号:14 (7): 527-527
标识
DOI:10.3390/bs14070527
摘要

Latent variables analysis is an important part of psychometric research. In this context, factor analysis and other related techniques have been widely applied for the investigation of the internal structure of psychometric tests. However, these methods perform a linear dimensionality reduction under a series of assumptions that could not always be verified in psychological data. Predictive techniques, such as artificial neural networks, could complement and improve the exploration of latent space, overcoming the limits of traditional methods. In this study, we explore the latent space generated by a particular artificial neural network: the variational autoencoder. This autoencoder could perform a nonlinear dimensionality reduction and encourage the latent features to follow a predefined distribution (usually a normal distribution) by learning the most important relationships hidden in data. In this study, we investigate the capacity of autoencoders to model item-factor relationships in simulated data, which encompasses linear and nonlinear associations. We also extend our investigation to a real dataset. Results on simulated data show that the variational autoencoder performs similarly to factor analysis when the relationships among observed and latent variables are linear, and it is able to reproduce the factor scores. Moreover, results on nonlinear data show that, differently than factor analysis, it can also learn to reproduce nonlinear relationships among observed variables and factors. The factor score estimates are also more accurate with respect to factor analysis. The real case results confirm the potential of the autoencoder in reducing dimensionality with mild assumptions on input data and in recognizing the function that links observed and latent variables.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒服的寻云完成签到 ,获得积分10
刚刚
科研小白发布了新的文献求助10
刚刚
背光发布了新的文献求助30
刚刚
1秒前
1秒前
fs完成签到,获得积分10
1秒前
小蘑菇应助Ferry采纳,获得10
2秒前
倪侃发布了新的文献求助10
2秒前
Dream Luminator完成签到,获得积分10
2秒前
甜美千山完成签到 ,获得积分10
3秒前
river_121完成签到,获得积分10
3秒前
Upupuu完成签到,获得积分10
3秒前
赵三仟完成签到,获得积分10
3秒前
3秒前
Snow发布了新的文献求助10
3秒前
4秒前
zhangrundong发布了新的文献求助30
4秒前
4秒前
自然雁风完成签到,获得积分10
4秒前
FashionBoy应助魏铭莹采纳,获得10
4秒前
孤独的自中完成签到,获得积分10
4秒前
侯康完成签到,获得积分20
4秒前
4秒前
4秒前
jjbl完成签到 ,获得积分10
5秒前
FashionBoy应助叮叮当采纳,获得10
5秒前
Bassvv发布了新的文献求助10
5秒前
6秒前
万能图书馆应助淡淡大山采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
Dean应助科研通管家采纳,获得50
7秒前
SciGPT应助平凡的书雁采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得150
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得150
7秒前
慕青应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得20
7秒前
汉堡包应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得20
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5167371
求助须知:如何正确求助?哪些是违规求助? 4359251
关于积分的说明 13572619
捐赠科研通 4205717
什么是DOI,文献DOI怎么找? 2306586
邀请新用户注册赠送积分活动 1306217
关于科研通互助平台的介绍 1252763