Exploring the Potential of Variational Autoencoders for Modeling Nonlinear Relationships in Psychological Data

非线性系统 计算机科学 人工智能 心理学 算法 机器学习 应用数学 数学 物理 量子力学
作者
Nicola Milano,Monica Casella,Raymond G. Esposito,‎Davide Marocco
出处
期刊:Behavioral sciences [Multidisciplinary Digital Publishing Institute]
卷期号:14 (7): 527-527
标识
DOI:10.3390/bs14070527
摘要

Latent variables analysis is an important part of psychometric research. In this context, factor analysis and other related techniques have been widely applied for the investigation of the internal structure of psychometric tests. However, these methods perform a linear dimensionality reduction under a series of assumptions that could not always be verified in psychological data. Predictive techniques, such as artificial neural networks, could complement and improve the exploration of latent space, overcoming the limits of traditional methods. In this study, we explore the latent space generated by a particular artificial neural network: the variational autoencoder. This autoencoder could perform a nonlinear dimensionality reduction and encourage the latent features to follow a predefined distribution (usually a normal distribution) by learning the most important relationships hidden in data. In this study, we investigate the capacity of autoencoders to model item-factor relationships in simulated data, which encompasses linear and nonlinear associations. We also extend our investigation to a real dataset. Results on simulated data show that the variational autoencoder performs similarly to factor analysis when the relationships among observed and latent variables are linear, and it is able to reproduce the factor scores. Moreover, results on nonlinear data show that, differently than factor analysis, it can also learn to reproduce nonlinear relationships among observed variables and factors. The factor score estimates are also more accurate with respect to factor analysis. The real case results confirm the potential of the autoencoder in reducing dimensionality with mild assumptions on input data and in recognizing the function that links observed and latent variables.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
糖布里部发布了新的文献求助10
刚刚
一一发布了新的文献求助10
3秒前
陌上发布了新的文献求助10
3秒前
3秒前
mu完成签到,获得积分20
3秒前
4秒前
111发布了新的文献求助10
4秒前
求你了哥发布了新的文献求助10
4秒前
5秒前
NexusExplorer应助草上飞采纳,获得10
5秒前
哈噜噗噜发布了新的文献求助10
6秒前
6秒前
gdh完成签到,获得积分10
6秒前
以戈发布了新的文献求助30
6秒前
7秒前
xingfangshu发布了新的文献求助10
7秒前
阿越应助蛋挞采纳,获得10
8秒前
天天快乐应助于特采纳,获得10
8秒前
8秒前
8秒前
wyblobin发布了新的文献求助10
9秒前
李健应助滚去学习采纳,获得10
9秒前
gaogao发布了新的文献求助10
9秒前
9秒前
槿荣发布了新的文献求助10
10秒前
英姑应助文艺乐蕊采纳,获得30
10秒前
陌上完成签到,获得积分10
11秒前
自由的尔蓉完成签到 ,获得积分10
11秒前
11秒前
11秒前
11秒前
12秒前
sophia完成签到 ,获得积分10
12秒前
淡淡的小松鼠完成签到,获得积分10
13秒前
你讲咩发布了新的文献求助10
13秒前
陈早早完成签到,获得积分10
13秒前
13秒前
爆米花应助allofme采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4559758
求助须知:如何正确求助?哪些是违规求助? 3986111
关于积分的说明 12341862
捐赠科研通 3656799
什么是DOI,文献DOI怎么找? 2014599
邀请新用户注册赠送积分活动 1049307
科研通“疑难数据库(出版商)”最低求助积分说明 937635