已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Exploring the Potential of Variational Autoencoders for Modeling Nonlinear Relationships in Psychological Data

非线性系统 计算机科学 人工智能 心理学 算法 机器学习 应用数学 数学 物理 量子力学
作者
Nicola Milano,Monica Casella,Raymond G. Esposito,‎Davide Marocco
出处
期刊:Behavioral sciences [MDPI AG]
卷期号:14 (7): 527-527
标识
DOI:10.3390/bs14070527
摘要

Latent variables analysis is an important part of psychometric research. In this context, factor analysis and other related techniques have been widely applied for the investigation of the internal structure of psychometric tests. However, these methods perform a linear dimensionality reduction under a series of assumptions that could not always be verified in psychological data. Predictive techniques, such as artificial neural networks, could complement and improve the exploration of latent space, overcoming the limits of traditional methods. In this study, we explore the latent space generated by a particular artificial neural network: the variational autoencoder. This autoencoder could perform a nonlinear dimensionality reduction and encourage the latent features to follow a predefined distribution (usually a normal distribution) by learning the most important relationships hidden in data. In this study, we investigate the capacity of autoencoders to model item-factor relationships in simulated data, which encompasses linear and nonlinear associations. We also extend our investigation to a real dataset. Results on simulated data show that the variational autoencoder performs similarly to factor analysis when the relationships among observed and latent variables are linear, and it is able to reproduce the factor scores. Moreover, results on nonlinear data show that, differently than factor analysis, it can also learn to reproduce nonlinear relationships among observed variables and factors. The factor score estimates are also more accurate with respect to factor analysis. The real case results confirm the potential of the autoencoder in reducing dimensionality with mild assumptions on input data and in recognizing the function that links observed and latent variables.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光亮的冰薇完成签到 ,获得积分10
1秒前
在水一方应助勤劳莹芝采纳,获得10
13秒前
orixero应助oyxz采纳,获得10
13秒前
HONG完成签到 ,获得积分10
14秒前
14秒前
Jasper应助科研通管家采纳,获得10
15秒前
木又应助科研通管家采纳,获得10
16秒前
SciGPT应助科研通管家采纳,获得10
16秒前
16秒前
Raven应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
哈基米德应助科研通管家采纳,获得10
16秒前
哈基米德应助科研通管家采纳,获得10
16秒前
16秒前
哈基米德应助科研通管家采纳,获得10
16秒前
哈基米德应助科研通管家采纳,获得25
16秒前
打打应助科研通管家采纳,获得10
16秒前
17秒前
彭于晏应助科研通管家采纳,获得10
17秒前
Criminology34应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
酷波er应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
FashionBoy应助科研通管家采纳,获得10
17秒前
xxfsx应助科研通管家采纳,获得10
17秒前
情怀应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
17秒前
18秒前
20秒前
yyyhhhzzz0123发布了新的文献求助30
21秒前
arisw发布了新的文献求助10
21秒前
zhs发布了新的文献求助10
24秒前
26秒前
生椰拿铁死忠粉应助minya采纳,获得20
31秒前
妮妮完成签到 ,获得积分10
31秒前
李健的小迷弟应助北斗采纳,获得10
35秒前
坚定的泥猴桃完成签到 ,获得积分10
37秒前
阿泡阿茶和阿壶完成签到,获得积分10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5290666
求助须知:如何正确求助?哪些是违规求助? 4442020
关于积分的说明 13828956
捐赠科研通 4324772
什么是DOI,文献DOI怎么找? 2373838
邀请新用户注册赠送积分活动 1369227
关于科研通互助平台的介绍 1333275