亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Protein dynamics inform protein structure: An interdisciplinary investigation of protein crystallization propensity

蛋白质结晶 蛋白质动力学 蛋白质结构 结晶 化学 计算生物学 生物 生物化学 有机化学
作者
Mohammad Madani,Anna Tarakanova
出处
期刊:Matter [Elsevier]
卷期号:7 (9): 2978-2995
标识
DOI:10.1016/j.matt.2024.04.023
摘要

Progress and potentialIn this study, we explicitly resolve protein dynamics to capture the critical determinants of protein crystallization propensity through an interpretable attention-based graph neural network model. We show here that proteins must be considered as dynamic moieties and that this essential attribute plays a pivotal role in resolving their crystallization propensity. This is the first work to use structural dynamics features for crystallization propensity prediction. We introduce DSDCrystal, a new toolbox for protein crystal quality prediction, encoded directly with protein dynamics as key input features. Our predictive tools may enable the rational design of protein sequences that result in a diffraction-quality crystal by considering comprehensive biological mechanisms. This framework expands the classical paradigm of structural biology and establishes a roadmap for layered and intuitive control for functional protein design.Highlights•Framework merges physics and ML to predict crystallization propensity via protein dynamics•An interpretable protein crystallization propensity predictor validated by MD simulation•New insights into how dynamics influence protein structure characterizationSummaryThe classical central paradigm of structural biology links a protein's sequence to its structure and function but overlooks conformational fluctuation that is integral to protein function. We propose a graph neural network model based on gated attention that explicitly incorporates protein dynamics via physics-based models to predict protein crystallization propensity. We compare results to all-atom molecular dynamics simulations of flexible, disordered human tropoelastin and ordered, globular human lysyl oxidase-like protein. Our findings show that fluctuating residues correlate with locally maximal attention scores in the neural network. By methodically truncating the sequences, we establish correlations between dynamical and physicochemical molecular properties and protein crystallization propensity. Accounting for comprehensive biological mechanisms, our tool can facilitate the rational design of protein sequences that lead to diffraction-quality crystals. Our study showcases the integration of physics-based and machine learning models for structure and property prediction, expanding the classical paradigm of structural biology.Graphical abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
23秒前
肆肆完成签到,获得积分10
57秒前
1分钟前
锋feng完成签到 ,获得积分10
1分钟前
你博哥完成签到 ,获得积分10
2分钟前
4分钟前
陶沛发布了新的文献求助10
4分钟前
大喵完成签到,获得积分10
5分钟前
爱静静完成签到,获得积分0
5分钟前
Jenny完成签到 ,获得积分10
6分钟前
书文混四方完成签到 ,获得积分10
7分钟前
7分钟前
隐形问萍完成签到,获得积分10
8分钟前
隐形问萍发布了新的文献求助10
8分钟前
FSYHantis完成签到,获得积分10
9分钟前
陈元元K完成签到,获得积分10
10分钟前
wangye完成签到 ,获得积分10
10分钟前
名侦探柯基完成签到 ,获得积分10
11分钟前
Jack80应助科研通管家采纳,获得50
11分钟前
cy0824完成签到 ,获得积分10
12分钟前
个性松完成签到 ,获得积分10
12分钟前
TAOTAO完成签到 ,获得积分10
12分钟前
13分钟前
麻将发布了新的文献求助10
13分钟前
15分钟前
活泼蜜蜂应助程风破浪采纳,获得10
15分钟前
毕个业完成签到 ,获得积分10
15分钟前
15分钟前
mengyuhuan完成签到 ,获得积分10
16分钟前
光亮的城完成签到 ,获得积分10
16分钟前
科研通AI2S应助wobuxin采纳,获得10
17分钟前
领导范儿应助CHEN采纳,获得10
18分钟前
19分钟前
CHEN发布了新的文献求助10
19分钟前
CHEN完成签到,获得积分10
19分钟前
星辰大海应助Bo采纳,获得10
20分钟前
20分钟前
Bo发布了新的文献求助10
20分钟前
Bo完成签到,获得积分10
20分钟前
20分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162343
求助须知:如何正确求助?哪些是违规求助? 2813330
关于积分的说明 7899719
捐赠科研通 2472848
什么是DOI,文献DOI怎么找? 1316533
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602142