亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Iterative algorithm computational spectrometer based on a single-hidden-layer neural network

计算机科学 算法 人工神经网络 分光计 高光谱成像 迭代法 计算复杂性理论 迭代重建 人工智能 光学 物理
作者
Yuanhao Zheng,Haojie Liao,Lin Yang,Yao Chen
出处
期刊:Optics Express [The Optical Society]
卷期号:32 (13): 23316-23316 被引量:1
标识
DOI:10.1364/oe.524670
摘要

Computational spectrometers have great application prospects in hyperspectral detection, and fast and high-precision in situ measurement is an important development trend. The computational spectrometer based on iterative algorithms has low requirements for computational resources and is easy to achieve hardware integration and in situ measurement. However, iterative algorithms are difficult to achieve high reconstruction accuracy due to the ill-posed nature of problems. Neural networks have powerful learning capabilities and can achieve high-precision spectral reconstruction. However, solely relying on neural network algorithms for reconstruction requires higher storage space and computing power from hardware devices, which makes it difficult to integrate large-scale neural network models into embedded systems. We propose using neural networks to alleviate the effect of the problem ill-posedness on the reconstruction results of iterative algorithms, so as to improve the reconstruction accuracy of the iterative algorithm computational spectrometers. First, spectral reconstruction was performed with iterative algorithms using a public spectral dataset. Then, a single-hidden-layer neural network was trained to establish a fitting relationship between the iterative algorithm spectral reconstruction results and the original spectrum. Finally, simulation and experimental results show that the proposed application of neural networks to alleviate the ill-posed problem of the iterative algorithm spectral reconstruction can effectively improve the reconstruction accuracy of iterative algorithm computational spectrometers with low computational resources. The research results may have good potential in achieving fast and high-precision in situ measurements of computational spectrometers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姜且完成签到 ,获得积分10
6秒前
20秒前
852应助mingyue采纳,获得10
28秒前
37秒前
某某某发布了新的文献求助10
43秒前
隐形曼青应助云治采纳,获得10
1分钟前
小马甲应助某某某采纳,获得10
1分钟前
1分钟前
丘比特应助忘忧Aquarius采纳,获得10
1分钟前
1分钟前
2分钟前
某某某发布了新的文献求助10
2分钟前
2分钟前
忘忧Aquarius完成签到,获得积分10
2分钟前
Jasper应助某某某采纳,获得10
2分钟前
mingyue发布了新的文献求助10
2分钟前
2分钟前
2分钟前
Hillson完成签到,获得积分10
2分钟前
某某某发布了新的文献求助10
2分钟前
fev123完成签到,获得积分10
2分钟前
龟龟完成签到 ,获得积分10
2分钟前
搜集达人应助某某某采纳,获得10
3分钟前
StellaZhang发布了新的文献求助10
3分钟前
StellaZhang完成签到,获得积分10
3分钟前
3分钟前
3分钟前
某某某发布了新的文献求助10
3分钟前
云治发布了新的文献求助10
3分钟前
4分钟前
深情安青应助某某某采纳,获得10
4分钟前
4分钟前
丁牛青发布了新的文献求助10
4分钟前
充电宝应助丁牛青采纳,获得10
4分钟前
4分钟前
4分钟前
某某某发布了新的文献求助10
4分钟前
玛琳卡迪马完成签到,获得积分10
5分钟前
5分钟前
Akim应助ben采纳,获得10
5分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303242
求助须知:如何正确求助?哪些是违规求助? 2937578
关于积分的说明 8482477
捐赠科研通 2611463
什么是DOI,文献DOI怎么找? 1425919
科研通“疑难数据库(出版商)”最低求助积分说明 662457
邀请新用户注册赠送积分活动 647005