Iterative algorithm computational spectrometer based on a single-hidden-layer neural network

计算机科学 算法 人工神经网络 分光计 高光谱成像 迭代法 计算复杂性理论 迭代重建 人工智能 光学 物理
作者
Yuanhao Zheng,Haojie Liao,Lin Yang,Yao Chen
出处
期刊:Optics Express [Optica Publishing Group]
卷期号:32 (13): 23316-23316 被引量:1
标识
DOI:10.1364/oe.524670
摘要

Computational spectrometers have great application prospects in hyperspectral detection, and fast and high-precision in situ measurement is an important development trend. The computational spectrometer based on iterative algorithms has low requirements for computational resources and is easy to achieve hardware integration and in situ measurement. However, iterative algorithms are difficult to achieve high reconstruction accuracy due to the ill-posed nature of problems. Neural networks have powerful learning capabilities and can achieve high-precision spectral reconstruction. However, solely relying on neural network algorithms for reconstruction requires higher storage space and computing power from hardware devices, which makes it difficult to integrate large-scale neural network models into embedded systems. We propose using neural networks to alleviate the effect of the problem ill-posedness on the reconstruction results of iterative algorithms, so as to improve the reconstruction accuracy of the iterative algorithm computational spectrometers. First, spectral reconstruction was performed with iterative algorithms using a public spectral dataset. Then, a single-hidden-layer neural network was trained to establish a fitting relationship between the iterative algorithm spectral reconstruction results and the original spectrum. Finally, simulation and experimental results show that the proposed application of neural networks to alleviate the ill-posed problem of the iterative algorithm spectral reconstruction can effectively improve the reconstruction accuracy of iterative algorithm computational spectrometers with low computational resources. The research results may have good potential in achieving fast and high-precision in situ measurements of computational spectrometers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助樱悼柳雪采纳,获得10
1秒前
1秒前
2秒前
乐乐应助傲娇的曼香采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
活力惜寒完成签到,获得积分10
4秒前
qq完成签到,获得积分10
4秒前
小二郎应助gyr采纳,获得20
5秒前
搞怪莫茗发布了新的文献求助10
5秒前
复杂沧海发布了新的文献求助10
5秒前
6秒前
Nancy发布了新的文献求助30
6秒前
7秒前
Gaoge完成签到,获得积分10
7秒前
7秒前
lmd完成签到,获得积分10
8秒前
8秒前
XY完成签到,获得积分10
9秒前
李健春发布了新的文献求助10
9秒前
只然完成签到,获得积分10
10秒前
高晨旭完成签到 ,获得积分10
11秒前
FashionBoy应助暴躁的阁采纳,获得10
11秒前
小汉子完成签到,获得积分10
11秒前
12秒前
忧郁含海完成签到,获得积分10
13秒前
思源应助kagaminelen采纳,获得10
13秒前
caiyuedong发布了新的文献求助10
13秒前
Walwyn完成签到 ,获得积分10
14秒前
复杂沧海完成签到,获得积分10
14秒前
14秒前
luqiu完成签到,获得积分10
15秒前
TaoJ完成签到,获得积分0
15秒前
AAAsun完成签到,获得积分10
15秒前
16秒前
SAODEN发布了新的文献求助10
16秒前
17秒前
19秒前
coesite发布了新的文献求助10
19秒前
勾晓彤完成签到,获得积分10
20秒前
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958345
求助须知:如何正确求助?哪些是违规求助? 3504604
关于积分的说明 11118997
捐赠科研通 3235815
什么是DOI,文献DOI怎么找? 1788530
邀请新用户注册赠送积分活动 871225
科研通“疑难数据库(出版商)”最低求助积分说明 802600