Anomaly Detection of Motion Artifact in Photoplethysmography (PPG) Sensors using Unsupervised Learning

光容积图 工件(错误) 人工智能 计算机视觉 计算机科学 运动(物理) 异常检测 无监督学习 模式识别(心理学) 运动传感器 滤波器(信号处理)
作者
Taehyeong Kwon,Sang Won Yoon
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (14): 23163-23172
标识
DOI:10.1109/jsen.2024.3404558
摘要

Photoplethysmography (PPG) sensors, which are optical sensors collecting human pulse signals, are known to be susceptible to the user's motion. Thus, for wide usage of PPG sensors in various applications, detecting motion artifacts (MAs) is urgently needed. This study proposes an anomaly detection algorithm for MAs using a long short-term memory (LSTM) autoencoder, loss functions customized to PPG sensor types, and a double-check algorithm supporting the loss function. The tested PPG sensors were first classified into two types. In sensors Type A, the fluctuation amplitude of the normal signal is larger than that of the MA signal. In sensors Type B, the fluctuation amplitude of the normal signal is smaller than that of the MA signal. These observations highlight the need for customized features tailored to each PPG type. Subsequently, the collected PPG raw data were processed using a moving average filter, and MA occurrences are identified by comparing the filtered data in the same sliding window with the customized loss function. Experimental results demonstrate that our algorithm successfully detects MAs regardless of the PPG sensor type. However, in very specific situations, the used loss function may not correctly detect the MA signals. To address this, a supporting double-check algorithm was additively proposed. As a result, this unsupervised learning-based algorithm comprehensively solves the commonly observed MA problems by using only normal signals as training datasets. The proposed algorithm requires low time complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cc发布了新的文献求助10
刚刚
刚刚
贾克斯完成签到,获得积分10
刚刚
2秒前
2秒前
NAN发布了新的文献求助10
2秒前
小蜜罐完成签到,获得积分10
2秒前
3秒前
3秒前
5秒前
Jally发布了新的文献求助10
5秒前
YAN完成签到,获得积分10
5秒前
AVA发布了新的文献求助10
6秒前
xyz完成签到,获得积分10
7秒前
FashionBoy应助害怕的果汁采纳,获得30
7秒前
jy发布了新的文献求助10
7秒前
可爱的函函应助Narsic采纳,获得10
8秒前
TT发布了新的文献求助10
8秒前
周乘风发布了新的文献求助10
8秒前
深情安青应助小小莫采纳,获得10
9秒前
肥波完成签到,获得积分10
9秒前
董致宇发布了新的文献求助10
10秒前
11秒前
NexusExplorer应助蹦蹦采纳,获得10
11秒前
12秒前
科研通AI2S应助QY11采纳,获得10
12秒前
12秒前
领导范儿应助AVA采纳,获得10
12秒前
13秒前
tommmmmm15发布了新的文献求助30
13秒前
14秒前
道尔完成签到,获得积分10
15秒前
机灵的听云完成签到,获得积分10
15秒前
16秒前
16秒前
爱静静应助小刘忙采纳,获得10
16秒前
TT完成签到,获得积分10
17秒前
18秒前
DONGDONG发布了新的文献求助10
18秒前
Habr发布了新的文献求助10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555334
求助须知:如何正确求助?哪些是违规求助? 3130933
关于积分的说明 9389211
捐赠科研通 2830448
什么是DOI,文献DOI怎么找? 1555992
邀请新用户注册赠送积分活动 726371
科研通“疑难数据库(出版商)”最低求助积分说明 715737