Dynamic flexible scheduling with transportation constraints by multi-agent reinforcement learning

计算机科学 强化学习 调度(生产过程) 分布式计算 人工智能 数学优化 数学
作者
Lixiang Zhang,Yan Yan,Yaoguang Hu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:134: 108699-108699
标识
DOI:10.1016/j.engappai.2024.108699
摘要

Reinforcement learning-based methods have addressed production scheduling problems with flexible processing constraints. However, delayed rewards arise due to the dynamic arrival of jobs and transportation constraints between two successive operations. The flow time of operations can only be determined after processing due to the possibility that the solution for job sequencing may change if new operations are inserted in dynamic environments. Job sequencing is often overlooked in single-agent-based scheduling methods. The lack of information sharing between multiple agents necessitates that researchers manually design reward functions to fit the relationship between optimization objectives and rewards, thereby reducing the accuracy of the learned policies. Thus, this paper proposes a multi-agent-based scheduling optimization framework that facilitates collaboration between the agents of both machines and jobs to address dynamic flexible job-shop scheduling problems (DFJSP) with transportation time constraints. Then, this paper formulates the Partial Observation Markov Decision Process and constructs a reward-sharing mechanism to tackle the delayed reward issue and facilitate policy learning. Finally, we develop an improved multi-agent dueling double deep Q network algorithm to optimize scheduling policy during long-term training. The results show that, compared with the state-of-the-art methods, the proposed method efficiently shortens the weighted flow time under the trained and unseen scenarios. Additionally, the case study results demonstrate its efficiency and responsiveness. It indicates that the proposed method efficiently addresses production scheduling problems with complex constraints, including the insertion of jobs, transportation time constraints, and flexible processing routes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sky998524发布了新的文献求助10
3秒前
深情安青应助科研通管家采纳,获得30
5秒前
xiaofei666应助科研通管家采纳,获得30
5秒前
5秒前
SciGPT应助科研通管家采纳,获得100
5秒前
5秒前
天天快乐应助科研通管家采纳,获得30
5秒前
ding应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
受伤纲发布了新的文献求助10
8秒前
坦率耳机应助发嗲的怜珊采纳,获得10
9秒前
10秒前
12秒前
天天快乐应助谨慎访蕊采纳,获得10
12秒前
Xxxxxxx完成签到 ,获得积分10
13秒前
Blessing33发布了新的文献求助10
13秒前
duosu发布了新的文献求助10
14秒前
三叔发布了新的文献求助10
15秒前
Rita发布了新的文献求助10
16秒前
童年的回忆klwqqt完成签到,获得积分10
17秒前
失似完成签到,获得积分10
18秒前
领导范儿应助贪玩绮南采纳,获得10
18秒前
Blessing33完成签到,获得积分20
20秒前
lxy发布了新的文献求助10
21秒前
24秒前
谨慎访蕊完成签到,获得积分20
25秒前
小蘑菇应助shuaige采纳,获得10
28秒前
宴之思完成签到,获得积分10
29秒前
贪玩绮南发布了新的文献求助10
30秒前
杨洁完成签到,获得积分20
31秒前
34秒前
发嗲的怜珊完成签到,获得积分10
35秒前
36秒前
随心完成签到,获得积分10
36秒前
kiseki完成签到 ,获得积分10
37秒前
38秒前
39秒前
草莓声明完成签到,获得积分20
40秒前
麦田的守望者完成签到,获得积分10
40秒前
cong1216发布了新的文献求助20
41秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161006
求助须知:如何正确求助?哪些是违规求助? 2812229
关于积分的说明 7895058
捐赠科研通 2471142
什么是DOI,文献DOI怎么找? 1315908
科研通“疑难数据库(出版商)”最低求助积分说明 631069
版权声明 602086