Dynamic flexible scheduling with transportation constraints by multi-agent reinforcement learning

计算机科学 强化学习 调度(生产过程) 分布式计算 人工智能 数学优化 数学
作者
Lixiang Zhang,Yan Yan,Yaoguang Hu
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:134: 108699-108699 被引量:5
标识
DOI:10.1016/j.engappai.2024.108699
摘要

Reinforcement learning-based methods have addressed production scheduling problems with flexible processing constraints. However, delayed rewards arise due to the dynamic arrival of jobs and transportation constraints between two successive operations. The flow time of operations can only be determined after processing due to the possibility that the solution for job sequencing may change if new operations are inserted in dynamic environments. Job sequencing is often overlooked in single-agent-based scheduling methods. The lack of information sharing between multiple agents necessitates that researchers manually design reward functions to fit the relationship between optimization objectives and rewards, thereby reducing the accuracy of the learned policies. Thus, this paper proposes a multi-agent-based scheduling optimization framework that facilitates collaboration between the agents of both machines and jobs to address dynamic flexible job-shop scheduling problems (DFJSP) with transportation time constraints. Then, this paper formulates the Partial Observation Markov Decision Process and constructs a reward-sharing mechanism to tackle the delayed reward issue and facilitate policy learning. Finally, we develop an improved multi-agent dueling double deep Q network algorithm to optimize scheduling policy during long-term training. The results show that, compared with the state-of-the-art methods, the proposed method efficiently shortens the weighted flow time under the trained and unseen scenarios. Additionally, the case study results demonstrate its efficiency and responsiveness. It indicates that the proposed method efficiently addresses production scheduling problems with complex constraints, including the insertion of jobs, transportation time constraints, and flexible processing routes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大个应助sky采纳,获得10
2秒前
3秒前
3秒前
嘻嘻嘻完成签到,获得积分10
4秒前
荣耀完成签到,获得积分10
4秒前
自由的松完成签到,获得积分10
6秒前
Yogas发布了新的文献求助10
6秒前
鸭绒发布了新的文献求助10
6秒前
zhhh发布了新的文献求助10
7秒前
7秒前
北川完成签到,获得积分20
7秒前
7秒前
Deadman发布了新的文献求助10
9秒前
9秒前
9秒前
大模型应助AA采纳,获得10
9秒前
RAY完成签到,获得积分10
10秒前
11秒前
荣耀发布了新的文献求助10
11秒前
11秒前
祈凛完成签到,获得积分10
12秒前
一切顺利发布了新的文献求助10
13秒前
i说晚安发布了新的文献求助10
13秒前
8D完成签到,获得积分10
13秒前
小二郎应助爱听歌雪旋采纳,获得10
13秒前
13秒前
研友_VZG7GZ应助TaiYueQian采纳,获得10
14秒前
咳咳咳完成签到,获得积分10
15秒前
15秒前
15秒前
recovery发布了新的文献求助10
16秒前
xieleito发布了新的文献求助10
17秒前
17秒前
D-L@rabbit完成签到 ,获得积分10
18秒前
RAY发布了新的文献求助10
19秒前
温梦花雨发布了新的文献求助80
19秒前
20秒前
香蕉觅云应助噜噜采纳,获得10
21秒前
21秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962701
求助须知:如何正确求助?哪些是违规求助? 3508707
关于积分的说明 11142251
捐赠科研通 3241458
什么是DOI,文献DOI怎么找? 1791539
邀请新用户注册赠送积分活动 872968
科研通“疑难数据库(出版商)”最低求助积分说明 803517