From molecular descriptors to the developmental toxicity prediction of pesticides/veterinary drugs/bio-pesticides against zebrafish embryo: Dual computational toxicological approaches for prioritization

数量结构-活动关系 杀虫剂 斑马鱼 毒性 发育毒性 毒理 计算生物学 生物 氟虫腈 生化工程 化学 生物信息学 怀孕 遗传学 生态学 工程类 生物化学 基因 有机化学 妊娠期
作者
Yutong Wang,Peng Wang,Tengjiao Fan,Ting Ren,Na Zhang,Lijiao Zhao,Rugang Zhong,Guohui Sun
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:476: 134945-134945 被引量:17
标识
DOI:10.1016/j.jhazmat.2024.134945
摘要

The escalating introduction of pesticides/veterinary drugs into the environment has necessitated a rapid evaluation of their potential risks to ecosystems and human health. The developmental toxicity of pesticides/veterinary drugs was less explored, and much less the large-scale predictions for untested pesticides, veterinary drugs and bio-pesticides. Alternative methods like quantitative structure-activity relationship (QSAR) are promising because their potential to ensure the sustainable and safe use of these chemicals. We collected 133 pesticides and veterinary drugs with half-maximal active concentration (AC50) as the zebrafish embryo developmental toxicity endpoint. The QSAR model development adhered to rigorous OECD principles, ensuring that the model possessed good internal robustness (R2 > 0.6 and QLOO2 > 0.6) and external predictivity (Rtest2 > 0.7, QFn2 >0.7, and CCCtest > 0.85). To further enhance the predictive performance of the model, a quantitative read-across structure-activity relationship (q-RASAR) model was established using the combined set of RASAR and 2D descriptors. Mechanistic interpretation revealed that dipole moment, the presence of C-O fragment at 10 topological distance, molecular size, lipophilicity, and Euclidean distance (ED)-based RA function were main factors influencing toxicity. For the first time, the established QSAR and q-RASAR models were combined to prioritize the developmental toxicity of a vast array of true external compounds (pesticides/veterinary drugs/bio-pesticides) lacking experimental values. The prediction reliability of each query molecule was evaluated by leverage approach and prediction reliability indicator. Overall, the dual computational toxicology models can inform decision-making and guide the design of new pesticides/veterinary drugs with improved safety profiles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jwxstc发布了新的文献求助10
1秒前
笑笑完成签到,获得积分10
1秒前
1秒前
2秒前
wagada发布了新的文献求助10
2秒前
王晓芳完成签到,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
唐jie完成签到 ,获得积分10
3秒前
YangXiao完成签到 ,获得积分10
3秒前
王涛发布了新的文献求助10
4秒前
4秒前
yqq38发布了新的文献求助10
4秒前
调皮小土豆完成签到,获得积分10
4秒前
5秒前
王晓芳发布了新的文献求助10
5秒前
CodeCraft应助端庄的火龙果采纳,获得10
6秒前
6秒前
6秒前
7秒前
Ann完成签到,获得积分10
7秒前
王土豆完成签到,获得积分10
7秒前
JIASHOUSHOU完成签到,获得积分10
7秒前
科研怪发布了新的文献求助10
7秒前
maomao1986完成签到,获得积分10
8秒前
复杂的无敌完成签到,获得积分10
8秒前
wei完成签到,获得积分10
8秒前
luluon完成签到,获得积分10
8秒前
星辰大海应助腼腆的缘分采纳,获得10
8秒前
动听以晴完成签到,获得积分10
9秒前
科研通AI6应助thousandlong采纳,获得10
9秒前
9秒前
脑洞疼应助麦子采纳,获得10
9秒前
汕头凯奇完成签到,获得积分10
9秒前
9秒前
生动飞凤完成签到 ,获得积分10
10秒前
7ohnny完成签到,获得积分10
10秒前
玩命的小虾米完成签到 ,获得积分10
11秒前
zsyhcl完成签到,获得积分10
11秒前
姜萌萌完成签到,获得积分20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629190
求助须知:如何正确求助?哪些是违规求助? 4719742
关于积分的说明 14968190
捐赠科研通 4787245
什么是DOI,文献DOI怎么找? 2556261
邀请新用户注册赠送积分活动 1517404
关于科研通互助平台的介绍 1478115