From molecular descriptors to the developmental toxicity prediction of pesticides/veterinary drugs/bio-pesticides against zebrafish embryo: Dual computational toxicological approaches for prioritization

数量结构-活动关系 杀虫剂 斑马鱼 毒性 发育毒性 毒理 计算生物学 生物 氟虫腈 生化工程 化学 生物信息学 怀孕 遗传学 生态学 工程类 生物化学 基因 妊娠期 有机化学
作者
Yutong Wang,Peng Wang,Tengjiao Fan,Ting Ren,Na Zhang,Lijiao Zhao,Rugang Zhong,Guohui Sun
出处
期刊:Journal of Hazardous Materials [Elsevier BV]
卷期号:476: 134945-134945 被引量:17
标识
DOI:10.1016/j.jhazmat.2024.134945
摘要

The escalating introduction of pesticides/veterinary drugs into the environment has necessitated a rapid evaluation of their potential risks to ecosystems and human health. The developmental toxicity of pesticides/veterinary drugs was less explored, and much less the large-scale predictions for untested pesticides, veterinary drugs and bio-pesticides. Alternative methods like quantitative structure-activity relationship (QSAR) are promising because their potential to ensure the sustainable and safe use of these chemicals. We collected 133 pesticides and veterinary drugs with half-maximal active concentration (AC50) as the zebrafish embryo developmental toxicity endpoint. The QSAR model development adhered to rigorous OECD principles, ensuring that the model possessed good internal robustness (R2 > 0.6 and QLOO2 > 0.6) and external predictivity (Rtest2 > 0.7, QFn2 >0.7, and CCCtest > 0.85). To further enhance the predictive performance of the model, a quantitative read-across structure-activity relationship (q-RASAR) model was established using the combined set of RASAR and 2D descriptors. Mechanistic interpretation revealed that dipole moment, the presence of C-O fragment at 10 topological distance, molecular size, lipophilicity, and Euclidean distance (ED)-based RA function were main factors influencing toxicity. For the first time, the established QSAR and q-RASAR models were combined to prioritize the developmental toxicity of a vast array of true external compounds (pesticides/veterinary drugs/bio-pesticides) lacking experimental values. The prediction reliability of each query molecule was evaluated by leverage approach and prediction reliability indicator. Overall, the dual computational toxicology models can inform decision-making and guide the design of new pesticides/veterinary drugs with improved safety profiles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
fashing完成签到,获得积分10
1秒前
芜湖完成签到,获得积分10
1秒前
温润如玉坤完成签到,获得积分10
1秒前
lyf完成签到,获得积分10
1秒前
元气糖完成签到,获得积分10
2秒前
SciGPT应助琢钰采纳,获得10
2秒前
聪慧芷巧发布了新的文献求助10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
Orange应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
ludong_0应助科研通管家采纳,获得10
3秒前
oh应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
DijiaXu应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
4秒前
大力的老虎完成签到,获得积分10
4秒前
fff完成签到 ,获得积分10
5秒前
杨洋完成签到,获得积分10
5秒前
Tracy.完成签到,获得积分10
5秒前
6秒前
lwj完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
皮皮团完成签到 ,获得积分10
7秒前
8秒前
舒心衣发布了新的文献求助10
8秒前
中海完成签到,获得积分10
8秒前
ludong_0完成签到,获得积分10
8秒前
kanglan完成签到,获得积分10
8秒前
健康富裕完成签到 ,获得积分10
9秒前
JingP完成签到,获得积分10
9秒前
任全强完成签到,获得积分10
10秒前
酷波er应助yyy采纳,获得10
10秒前
勤恳的仰完成签到,获得积分10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015806
求助须知:如何正确求助?哪些是违规求助? 3555777
关于积分的说明 11318714
捐赠科研通 3288911
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027