From molecular descriptors to the developmental toxicity prediction of pesticides/veterinary drugs/bio-pesticides against zebrafish embryo: Dual computational toxicological approaches for prioritization

数量结构-活动关系 杀虫剂 斑马鱼 毒性 发育毒性 毒理 计算生物学 生物 氟虫腈 生化工程 化学 生物信息学 怀孕 遗传学 生态学 工程类 生物化学 基因 妊娠期 有机化学
作者
Yutong Wang,Peng Wang,Tengjiao Fan,Ting Ren,Na Zhang,Lijiao Zhao,Rugang Zhong,Guohui Sun
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:476: 134945-134945 被引量:6
标识
DOI:10.1016/j.jhazmat.2024.134945
摘要

The escalating introduction of pesticides/veterinary drugs into the environment has necessitated a rapid evaluation of their potential risks to ecosystems and human health. The developmental toxicity of pesticides/veterinary drugs was less explored, and much less the large-scale predictions for untested pesticides, veterinary drugs and bio-pesticides. Alternative methods like quantitative structure-activity relationship (QSAR) are promising because their potential to ensure the sustainable and safe use of these chemicals. We collected 133 pesticides and veterinary drugs with half-maximal active concentration (AC50) as the zebrafish embryo developmental toxicity endpoint. The QSAR model development adhered to rigorous OECD principles, ensuring that the model possessed good internal robustness (R2 > 0.6 and QLOO2 > 0.6) and external predictivity (Rtest2 > 0.7, QFn2 >0.7, and CCCtest > 0.85). To further enhance the predictive performance of the model, a quantitative read-across structure-activity relationship (q-RASAR) model was established using the combined set of RASAR and 2D descriptors. Mechanistic interpretation revealed that dipole moment, the presence of C-O fragment at 10 topological distance, molecular size, lipophilicity, and Euclidean distance (ED)-based RA function were main factors influencing toxicity. For the first time, the established QSAR and q-RASAR models were combined to prioritize the developmental toxicity of a vast array of true external compounds (pesticides/veterinary drugs/bio-pesticides) lacking experimental values. The prediction reliability of each query molecule was evaluated by leverage approach and prediction reliability indicator. Overall, the dual computational toxicology models can inform decision-making and guide the design of new pesticides/veterinary drugs with improved safety profiles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱吃肥牛完成签到 ,获得积分10
刚刚
1秒前
3秒前
9秒前
虚幻皮卡丘完成签到,获得积分20
10秒前
10秒前
ayayaya完成签到 ,获得积分10
11秒前
13秒前
搞怪沛白发布了新的文献求助10
13秒前
13秒前
liu bo完成签到,获得积分10
14秒前
14秒前
PPSlu完成签到,获得积分10
15秒前
所所应助邵竺采纳,获得10
15秒前
16秒前
友00000完成签到 ,获得积分10
18秒前
Hcollide完成签到,获得积分10
18秒前
19秒前
hanleiharry1发布了新的文献求助10
19秒前
义气高丽完成签到 ,获得积分10
20秒前
万能图书馆应助搞怪沛白采纳,获得30
21秒前
21秒前
嘿嘿嘿发布了新的文献求助10
21秒前
applelpypies完成签到 ,获得积分10
22秒前
一一应助虚幻皮卡丘采纳,获得10
22秒前
可爱的函函应助好吃采纳,获得30
24秒前
贾舒涵发布了新的文献求助10
24秒前
丘比特应助迅哥采纳,获得10
25秒前
饼饼发布了新的文献求助10
26秒前
27秒前
Sssmmmyy完成签到,获得积分10
27秒前
29秒前
toking发布了新的文献求助10
30秒前
32秒前
33秒前
35秒前
wanci应助晚秋采纳,获得10
35秒前
36秒前
冷酷的如风完成签到,获得积分10
36秒前
谷雨发布了新的文献求助30
38秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134943
求助须知:如何正确求助?哪些是违规求助? 2785901
关于积分的说明 7774393
捐赠科研通 2441736
什么是DOI,文献DOI怎么找? 1298162
科研通“疑难数据库(出版商)”最低求助积分说明 625079
版权声明 600825