Experimental Analysis and Wear Prediction Model Based on Friction Heat for Dry Sliding Contact

材料科学 冶金 合金 钛合金 干摩擦 铝合金 复合材料 打滑(空气动力学) 热力学 物理
作者
Qiming Sun,Dayu Zheng
出处
期刊:Coatings [MDPI AG]
卷期号:14 (6): 742-742
标识
DOI:10.3390/coatings14060742
摘要

In this study, the influence of the frictional heat effect on the degree of wear is explored from the perspectives of initial contact positive pressure and frictional relative slip velocity. Experiments based on a multifunctional friction and wear machine show that the friction temperature increases with an increase in friction relative velocity and initial normal contact load, which exacerbates the frictional thermal expansion and normal load fluctuation, and with the generation of frictional heat, the normal force fluctuates periodically; the wear mass and temperature in the contact area iterate cyclically, which results in the wear mass increasing. 316L stainless steel, 5A06 aluminium alloy and pure titanium are used in the Archard wear model due to their applications in severe wear environments. Since 316L stainless steel, 5A06 aluminium alloy and pure titanium are mostly used in wear-intensive environments, the Archard wear model is optimised based on the frictional heat effect of these three materials, and the accuracy of the improved model in 316L stainless steel, 5A06 aluminium alloy and pure titanium is improved by 52.6%, 7.4% and 23.9%, respectively, when compared with the conventional model. This study lays a theoretical foundation for the wear prediction models of 316L stainless steel, 5A06 aluminium alloy and pure titanium.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
inzaghi完成签到,获得积分10
1秒前
深情安青应助hhhhhhxxxxxx采纳,获得10
1秒前
IrisRainbow发布了新的文献求助30
1秒前
2秒前
rous发布了新的文献求助10
2秒前
pency发布了新的文献求助10
3秒前
金平卢仙发布了新的文献求助10
3秒前
3秒前
NexusExplorer应助自觉的飞鸟采纳,获得30
3秒前
4秒前
所所应助wangyup采纳,获得10
4秒前
小蘑菇应助123采纳,获得10
5秒前
5秒前
5秒前
小鸣完成签到 ,获得积分10
5秒前
5秒前
7秒前
充电宝应助lll采纳,获得10
7秒前
冰火完成签到,获得积分10
7秒前
007发布了新的文献求助10
8秒前
宇航关注了科研通微信公众号
8秒前
内向的大白完成签到,获得积分10
9秒前
10秒前
科研通AI5应助顶顶小明采纳,获得10
10秒前
10秒前
隐形曼青应助Narsic采纳,获得10
10秒前
小王同学发布了新的文献求助10
11秒前
mini完成签到 ,获得积分10
11秒前
尛森发布了新的文献求助10
11秒前
J.发布了新的文献求助10
12秒前
彭于晏应助微笑的冰烟采纳,获得10
12秒前
13秒前
凌宇完成签到 ,获得积分10
13秒前
来日可追应助陈喵喵采纳,获得10
13秒前
研友_8oBpRZ完成签到,获得积分10
13秒前
13秒前
合适板栗完成签到,获得积分10
13秒前
14秒前
zhangzhisenn发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Fault identification method of electrical automation distribution equipment in distribution networks based on neural network 560
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 530
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3579406
求助须知:如何正确求助?哪些是违规求助? 3149344
关于积分的说明 9476879
捐赠科研通 2850607
什么是DOI,文献DOI怎么找? 1567271
邀请新用户注册赠送积分活动 734033
科研通“疑难数据库(出版商)”最低求助积分说明 720346