亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ChangeMamba: Remote Sensing Change Detection With Spatiotemporal State Space Model

建筑 计算机科学 人工智能 卷积神经网络 编码器 变更检测 变压器 水准点(测量) 机器学习 地理 大地测量学 电压 视觉艺术 艺术 物理 操作系统 量子力学
作者
Hongruixuan Chen,Jian Song,Chengxi Han,Junshi Xia,Naoto Yokoya
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-20 被引量:75
标识
DOI:10.1109/tgrs.2024.3417253
摘要

Convolutional neural networks (CNN) and Transformers have made impressive progress in the field of remote sensing change detection (CD).However, both architectures have inherent shortcomings: CNN are constrained by a limited receptive field that may hinder their ability to capture broader spatial contexts, while Transformers are computationally intensive, making them costly to train and deploy on large datasets.Recently, the Mamba architecture, based on state space models, has shown remarkable performance in a series of natural language processing tasks, which can effectively compensate for the shortcomings of the above two architectures.In this paper, we explore for the first time the potential of the Mamba architecture for remote sensing CD tasks.We tailor the corresponding frameworks, called MambaBCD, MambaSCD, and MambaBDA, for binary change detection (BCD), semantic change detection (SCD), and building damage assessment (BDA), respectively.All three frameworks adopt the cutting-edge Visual Mamba architecture as the encoder, which allows full learning of global spatial contextual information from the input images.For the change decoder, which is available in all three architectures, we propose three spatio-temporal relationship modeling mechanisms, which can be naturally combined with the Mamba architecture and fully utilize its attribute to achieve spatio-temporal interaction of multi-temporal features, thereby obtaining accurate change information.On five benchmark datasets, our proposed frameworks outperform current CNN-and Transformer-based approaches without using any complex training strategies or tricks, fully demonstrating the potential of the Mamba architecture in CD tasks.Further experiments show that our architecture is quite robust to degraded data.The source code is available in https://github.com/ChenHongruixuan/MambaCD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
豆都发布了新的文献求助10
1秒前
耳东陈完成签到 ,获得积分10
2秒前
壹玖一陆发布了新的文献求助10
3秒前
科研通AI6应助壹玖一陆采纳,获得10
8秒前
10秒前
我是老大应助wuzihao采纳,获得10
10秒前
max完成签到,获得积分10
10秒前
12秒前
17秒前
CodeCraft应助传统的书包采纳,获得30
20秒前
Evaporate发布了新的文献求助10
20秒前
20秒前
25秒前
小王完成签到 ,获得积分10
26秒前
浮游应助科研通管家采纳,获得10
29秒前
酷波er应助科研通管家采纳,获得10
30秒前
ding应助科研通管家采纳,获得10
30秒前
浮浮世世应助科研通管家采纳,获得30
30秒前
浮游应助科研通管家采纳,获得10
30秒前
情怀应助科研通管家采纳,获得10
30秒前
tdtk发布了新的文献求助10
30秒前
张步完成签到 ,获得积分10
31秒前
32秒前
35秒前
老老实实好好活着完成签到,获得积分10
35秒前
39秒前
zozox完成签到 ,获得积分10
42秒前
李健的小迷弟应助nanne采纳,获得30
42秒前
43秒前
gzwhh发布了新的文献求助30
48秒前
酷波er应助tdtk采纳,获得10
49秒前
50秒前
JamesPei应助zorro3574采纳,获得10
51秒前
54秒前
56秒前
凭什么完成签到,获得积分10
56秒前
58秒前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493801
求助须知:如何正确求助?哪些是违规求助? 4591808
关于积分的说明 14434688
捐赠科研通 4524200
什么是DOI,文献DOI怎么找? 2478731
邀请新用户注册赠送积分活动 1463717
关于科研通互助平台的介绍 1436490