ChangeMamba: Remote Sensing Change Detection With Spatiotemporal State Space Model

建筑 计算机科学 人工智能 卷积神经网络 编码器 变更检测 变压器 水准点(测量) 机器学习 地理 大地测量学 电压 视觉艺术 艺术 物理 操作系统 量子力学
作者
Hongruixuan Chen,Jian Song,Chengxi Han,Junshi Xia,Naoto Yokoya
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-20 被引量:42
标识
DOI:10.1109/tgrs.2024.3417253
摘要

Convolutional neural networks (CNN) and Transformers have made impressive progress in the field of remote sensing change detection (CD).However, both architectures have inherent shortcomings: CNN are constrained by a limited receptive field that may hinder their ability to capture broader spatial contexts, while Transformers are computationally intensive, making them costly to train and deploy on large datasets.Recently, the Mamba architecture, based on state space models, has shown remarkable performance in a series of natural language processing tasks, which can effectively compensate for the shortcomings of the above two architectures.In this paper, we explore for the first time the potential of the Mamba architecture for remote sensing CD tasks.We tailor the corresponding frameworks, called MambaBCD, MambaSCD, and MambaBDA, for binary change detection (BCD), semantic change detection (SCD), and building damage assessment (BDA), respectively.All three frameworks adopt the cutting-edge Visual Mamba architecture as the encoder, which allows full learning of global spatial contextual information from the input images.For the change decoder, which is available in all three architectures, we propose three spatio-temporal relationship modeling mechanisms, which can be naturally combined with the Mamba architecture and fully utilize its attribute to achieve spatio-temporal interaction of multi-temporal features, thereby obtaining accurate change information.On five benchmark datasets, our proposed frameworks outperform current CNN-and Transformer-based approaches without using any complex training strategies or tricks, fully demonstrating the potential of the Mamba architecture in CD tasks.Further experiments show that our architecture is quite robust to degraded data.The source code is available in https://github.com/ChenHongruixuan/MambaCD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Strongly完成签到,获得积分10
1秒前
nannan发布了新的文献求助10
2秒前
3秒前
丘比特应助水流众生采纳,获得10
3秒前
3秒前
Melody发布了新的文献求助10
3秒前
汉堡包应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
老老实实好好活着完成签到,获得积分10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
MchemG应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
czh应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
4秒前
4秒前
星辰大海应助科研通管家采纳,获得30
4秒前
4秒前
MchemG应助科研通管家采纳,获得10
4秒前
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
4秒前
SiDi发布了新的文献求助10
7秒前
9秒前
9秒前
英俊的铭应助SiDi采纳,获得10
10秒前
10秒前
小旭vip完成签到 ,获得积分10
12秒前
frl发布了新的文献求助10
13秒前
jtyuan发布了新的文献求助10
13秒前
热心市民小红花应助朝颜采纳,获得10
13秒前
FashionBoy应助朝颜采纳,获得10
14秒前
十一发布了新的文献求助10
14秒前
14秒前
qcf完成签到 ,获得积分10
14秒前
14秒前
14秒前
14秒前
万能图书馆应助SaiKeery采纳,获得10
14秒前
2024020847完成签到,获得积分10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988975
求助须知:如何正确求助?哪些是违规求助? 3531316
关于积分的说明 11253424
捐赠科研通 3269917
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882063
科研通“疑难数据库(出版商)”最低求助积分说明 809068