ChangeMamba: Remote Sensing Change Detection With Spatiotemporal State Space Model

建筑 计算机科学 人工智能 卷积神经网络 编码器 变更检测 变压器 水准点(测量) 机器学习 地理 大地测量学 电压 视觉艺术 艺术 物理 操作系统 量子力学
作者
Hongruixuan Chen,Jian Song,Chengxi Han,Junshi Xia,Naoto Yokoya
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-20 被引量:42
标识
DOI:10.1109/tgrs.2024.3417253
摘要

Convolutional neural networks (CNN) and Transformers have made impressive progress in the field of remote sensing change detection (CD).However, both architectures have inherent shortcomings: CNN are constrained by a limited receptive field that may hinder their ability to capture broader spatial contexts, while Transformers are computationally intensive, making them costly to train and deploy on large datasets.Recently, the Mamba architecture, based on state space models, has shown remarkable performance in a series of natural language processing tasks, which can effectively compensate for the shortcomings of the above two architectures.In this paper, we explore for the first time the potential of the Mamba architecture for remote sensing CD tasks.We tailor the corresponding frameworks, called MambaBCD, MambaSCD, and MambaBDA, for binary change detection (BCD), semantic change detection (SCD), and building damage assessment (BDA), respectively.All three frameworks adopt the cutting-edge Visual Mamba architecture as the encoder, which allows full learning of global spatial contextual information from the input images.For the change decoder, which is available in all three architectures, we propose three spatio-temporal relationship modeling mechanisms, which can be naturally combined with the Mamba architecture and fully utilize its attribute to achieve spatio-temporal interaction of multi-temporal features, thereby obtaining accurate change information.On five benchmark datasets, our proposed frameworks outperform current CNN-and Transformer-based approaches without using any complex training strategies or tricks, fully demonstrating the potential of the Mamba architecture in CD tasks.Further experiments show that our architecture is quite robust to degraded data.The source code is available in https://github.com/ChenHongruixuan/MambaCD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
科研通AI5应助jingxian采纳,获得10
1秒前
lukawa发布了新的文献求助10
1秒前
yarazhang发布了新的文献求助10
2秒前
zhangkexin发布了新的文献求助10
2秒前
3秒前
3秒前
重要无招发布了新的文献求助10
5秒前
8秒前
8秒前
辛夷发布了新的文献求助10
9秒前
充电宝应助来来采纳,获得10
9秒前
重要无招完成签到,获得积分10
9秒前
Hanson完成签到,获得积分10
10秒前
11秒前
zhangkexin完成签到,获得积分10
11秒前
cndxh完成签到 ,获得积分10
12秒前
12秒前
12秒前
Akim应助哭泣的金鱼采纳,获得10
12秒前
合适橘完成签到,获得积分10
13秒前
聪明山芙完成签到,获得积分10
13秒前
慵懒芙芙完成签到 ,获得积分10
13秒前
jinmuna发布了新的文献求助20
13秒前
基金中中中完成签到,获得积分10
14秒前
14秒前
沈万熙发布了新的文献求助10
15秒前
乐乐发布了新的文献求助10
17秒前
18秒前
绵羊座鸭梨完成签到 ,获得积分10
19秒前
jingxian发布了新的文献求助10
22秒前
23秒前
深情安青应助斯文念波采纳,获得10
24秒前
充电宝应助清仔采纳,获得10
26秒前
bkagyin应助乐乐采纳,获得10
26秒前
lili完成签到 ,获得积分10
26秒前
27秒前
一一yi完成签到,获得积分10
28秒前
金鱼完成签到,获得积分10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989589
求助须知:如何正确求助?哪些是违规求助? 3531795
关于积分的说明 11254881
捐赠科研通 3270329
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176