Development of an immunoinflammatory indicator-related dynamic nomogram based on machine learning for the prediction of intravenous immunoglobulin-resistant Kawasaki disease patients

列线图 接收机工作特性 医学 机器学习 曲线下面积 川崎病 内科学 计算机科学 动脉
作者
Y Wang,Yinyin Cao,Yang Li,Fenhua Zhu,Meifen Yuan,Jin Xu,Xiaojing Ma,Jian Li
出处
期刊:International Immunopharmacology [Elsevier]
卷期号:134: 112194-112194
标识
DOI:10.1016/j.intimp.2024.112194
摘要

Approximately 10–20% of Kawasaki disease (KD) patients suffer from intravenous immunoglobulin (IVIG) resistance, placing them at higher risk of developing coronary artery aneurysms. Therefore, we aimed to construct an IVIG resistance prediction tool for children with KD in Shanghai, China. Retrospective analysis was conducted on data from 1271 patients diagnosed with KD and the patients were randomly divided into a training set and a validation set in a 2:1 ratio. Machine learning algorithms were employed to identify important predictors associated with IVIG resistance and to build a predictive model. The best-performing model was used to construct a dynamic nomogram. Moreover, receiver operating characteristic curves, calibration plots, and decision-curve analysis were utilized to measure the discriminatory power, accuracy, and clinical utility of the nomogram. Six variables were identified as important predictors, including C-reactive protein, neutrophil ratio, procalcitonin, CD3 ratio, CD19 count, and IgM level. A dynamic nomogram constructed with these factors was available at https://hktk.shinyapps.io/dynnomapp/. The nomogram demonstrated good diagnostic performance in the training and validation sets (area under the receiver operating characteristic curve = 0.816 and 0.800, respectively). Moreover, the calibration curves and decision curves analysis indicated that the nomogram showed good consistency between predicted and actual outcomes and had good clinical benefits. A web-based dynamic nomogram for IVIG resistance was constructed with good predictive performance, which can be used as a practical approach for early screening to assist physicians in personalizing the treatment of KD patients in Shanghai.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鳗鱼乐巧发布了新的文献求助10
1秒前
菲菲公主关注了科研通微信公众号
1秒前
阜睿发布了新的文献求助10
1秒前
云轩完成签到,获得积分10
2秒前
英姑应助龙辉采纳,获得10
2秒前
Zxc发布了新的文献求助20
2秒前
3秒前
3秒前
guagua发布了新的文献求助10
4秒前
顾翩翩完成签到,获得积分10
4秒前
米线完成签到 ,获得积分10
4秒前
博弈春秋发布了新的文献求助10
4秒前
4秒前
一只桃完成签到,获得积分10
5秒前
whatever举报YY求助涉嫌违规
5秒前
孙皓然发布了新的文献求助10
5秒前
万能图书馆应助安静笑晴采纳,获得10
5秒前
默默的南珍完成签到 ,获得积分10
6秒前
TWO宝发布了新的文献求助10
7秒前
李健应助研玲采纳,获得10
7秒前
情怀应助园游会采纳,获得10
7秒前
lululu发布了新的文献求助10
8秒前
y彤完成签到,获得积分10
8秒前
平淡南霜完成签到,获得积分10
8秒前
8秒前
guagua完成签到,获得积分10
9秒前
10秒前
11秒前
鳗鱼乐巧完成签到,获得积分20
11秒前
bierbia发布了新的文献求助10
11秒前
xiaoran发布了新的文献求助10
11秒前
wangdao完成签到,获得积分10
12秒前
小蘑菇应助Zxc采纳,获得10
12秒前
dxc完成签到 ,获得积分10
12秒前
youranzixing完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
李健应助yinhe028采纳,获得10
13秒前
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144482
求助须知:如何正确求助?哪些是违规求助? 2796014
关于积分的说明 7817418
捐赠科研通 2452067
什么是DOI,文献DOI怎么找? 1304867
科研通“疑难数据库(出版商)”最低求助积分说明 627330
版权声明 601432