已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development of an immunoinflammatory indicator-related dynamic nomogram based on machine learning for the prediction of intravenous immunoglobulin-resistant Kawasaki disease patients

列线图 接收机工作特性 医学 机器学习 曲线下面积 川崎病 内科学 计算机科学 动脉
作者
Y Wang,Yinyin Cao,Yang Li,Fenhua Zhu,Meifen Yuan,Jin Xu,Xiaojing Ma,Jian Li
出处
期刊:International Immunopharmacology [Elsevier BV]
卷期号:134: 112194-112194 被引量:4
标识
DOI:10.1016/j.intimp.2024.112194
摘要

Approximately 10–20% of Kawasaki disease (KD) patients suffer from intravenous immunoglobulin (IVIG) resistance, placing them at higher risk of developing coronary artery aneurysms. Therefore, we aimed to construct an IVIG resistance prediction tool for children with KD in Shanghai, China. Retrospective analysis was conducted on data from 1271 patients diagnosed with KD and the patients were randomly divided into a training set and a validation set in a 2:1 ratio. Machine learning algorithms were employed to identify important predictors associated with IVIG resistance and to build a predictive model. The best-performing model was used to construct a dynamic nomogram. Moreover, receiver operating characteristic curves, calibration plots, and decision-curve analysis were utilized to measure the discriminatory power, accuracy, and clinical utility of the nomogram. Six variables were identified as important predictors, including C-reactive protein, neutrophil ratio, procalcitonin, CD3 ratio, CD19 count, and IgM level. A dynamic nomogram constructed with these factors was available at https://hktk.shinyapps.io/dynnomapp/. The nomogram demonstrated good diagnostic performance in the training and validation sets (area under the receiver operating characteristic curve = 0.816 and 0.800, respectively). Moreover, the calibration curves and decision curves analysis indicated that the nomogram showed good consistency between predicted and actual outcomes and had good clinical benefits. A web-based dynamic nomogram for IVIG resistance was constructed with good predictive performance, which can be used as a practical approach for early screening to assist physicians in personalizing the treatment of KD patients in Shanghai.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
施春婷aaa发布了新的文献求助10
刚刚
沉沉浮完成签到 ,获得积分20
刚刚
hsy发布了新的文献求助10
1秒前
1秒前
喜悦的秋双关注了科研通微信公众号
4秒前
共享精神应助hsy采纳,获得10
4秒前
柳易槐完成签到,获得积分10
4秒前
科研通AI5应助jbtjht采纳,获得10
5秒前
6秒前
piupiu完成签到,获得积分10
7秒前
Ava应助蓝田采纳,获得10
8秒前
ww发布了新的文献求助30
10秒前
充电宝应助hrpppp采纳,获得30
11秒前
davedavedave完成签到 ,获得积分10
11秒前
超帅的小白菜完成签到,获得积分10
12秒前
13秒前
XL神放完成签到 ,获得积分10
14秒前
15秒前
17秒前
Vincey完成签到,获得积分10
17秒前
畅快自行车完成签到 ,获得积分10
18秒前
18秒前
19秒前
19秒前
保卫时光完成签到,获得积分10
20秒前
共享精神应助YuuuY采纳,获得10
20秒前
liujingyi发布了新的文献求助10
21秒前
椰子完成签到 ,获得积分10
21秒前
zaza发布了新的文献求助30
22秒前
田様应助虎啊虎啊采纳,获得10
23秒前
25秒前
27秒前
完美世界应助元宝团子采纳,获得10
27秒前
张亚完成签到,获得积分10
27秒前
卢俊义关注了科研通微信公众号
28秒前
29秒前
31秒前
31秒前
32秒前
跳跃汉堡发布了新的文献求助10
32秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5209090
求助须知:如何正确求助?哪些是违规求助? 4386405
关于积分的说明 13660783
捐赠科研通 4245503
什么是DOI,文献DOI怎么找? 2329333
邀请新用户注册赠送积分活动 1327184
关于科研通互助平台的介绍 1279467