Development of an immunoinflammatory indicator-related dynamic nomogram based on machine learning for the prediction of intravenous immunoglobulin-resistant Kawasaki disease patients

列线图 接收机工作特性 医学 机器学习 曲线下面积 川崎病 内科学 计算机科学 动脉
作者
Y Wang,Yinyin Cao,Yang Li,Fenhua Zhu,Meifen Yuan,Jin Xu,Xiaojing Ma,Jian Li
出处
期刊:International Immunopharmacology [Elsevier BV]
卷期号:134: 112194-112194 被引量:3
标识
DOI:10.1016/j.intimp.2024.112194
摘要

Approximately 10–20% of Kawasaki disease (KD) patients suffer from intravenous immunoglobulin (IVIG) resistance, placing them at higher risk of developing coronary artery aneurysms. Therefore, we aimed to construct an IVIG resistance prediction tool for children with KD in Shanghai, China. Retrospective analysis was conducted on data from 1271 patients diagnosed with KD and the patients were randomly divided into a training set and a validation set in a 2:1 ratio. Machine learning algorithms were employed to identify important predictors associated with IVIG resistance and to build a predictive model. The best-performing model was used to construct a dynamic nomogram. Moreover, receiver operating characteristic curves, calibration plots, and decision-curve analysis were utilized to measure the discriminatory power, accuracy, and clinical utility of the nomogram. Six variables were identified as important predictors, including C-reactive protein, neutrophil ratio, procalcitonin, CD3 ratio, CD19 count, and IgM level. A dynamic nomogram constructed with these factors was available at https://hktk.shinyapps.io/dynnomapp/. The nomogram demonstrated good diagnostic performance in the training and validation sets (area under the receiver operating characteristic curve = 0.816 and 0.800, respectively). Moreover, the calibration curves and decision curves analysis indicated that the nomogram showed good consistency between predicted and actual outcomes and had good clinical benefits. A web-based dynamic nomogram for IVIG resistance was constructed with good predictive performance, which can be used as a practical approach for early screening to assist physicians in personalizing the treatment of KD patients in Shanghai.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
molotov发布了新的文献求助10
1秒前
1秒前
1秒前
zzzzzz完成签到,获得积分10
2秒前
归尘完成签到,获得积分10
2秒前
打打应助小红采纳,获得10
2秒前
2秒前
共渡完成签到,获得积分10
2秒前
修杰应助科研通管家采纳,获得10
3秒前
修杰应助科研通管家采纳,获得10
3秒前
修杰应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
kkkklo完成签到,获得积分10
3秒前
Hello应助科研通管家采纳,获得30
3秒前
3秒前
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
3秒前
DijiaXu应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
4秒前
wanci应助gg采纳,获得10
5秒前
xhl发布了新的文献求助30
6秒前
Jenny_Zhan完成签到,获得积分10
6秒前
灵巧的月光完成签到 ,获得积分10
6秒前
7秒前
iwww发布了新的文献求助10
7秒前
yuanxiaotang完成签到,获得积分10
7秒前
朴实的天晴完成签到,获得积分10
7秒前
7秒前
kd1412完成签到 ,获得积分10
7秒前
开朗的慕儿完成签到,获得积分10
7秒前
成就心锁完成签到 ,获得积分10
7秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015970
求助须知:如何正确求助?哪些是违规求助? 3555964
关于积分的说明 11319479
捐赠科研通 3289040
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812044