亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Advancements in Demodex mite detection: a comparative analysis of YOLOv5 and YOLOv8 utilizing microscopic examination images

蠕形螨 计算机科学 人工智能 生物 生态学
作者
Han Wang,Fang Xia,Zhiyuan Lin,Peng Zeng,Yonghong Yu,Yunxiao Liu,Haoyang Liu,Wenjing Hu,X. Y. Li,Xudong Jiang,Guangshun Chen,Guangdong Hou,Kai Leong Chong,Junbin Fang
标识
DOI:10.1117/12.3026178
摘要

This study conducts a rigorous comparative assessment of YOLOv5 and YOLOv8 for the detection of Demodex mites in microscopic examination images, leveraging crucial metrics such as accuracy, precision, recall, and F1-score. The investigation reveals the unequivocal superiority of YOLOv8, not only in quantitative measures but also substantiated by visual evidence, showcasing its applicability for real-time scenarios. YOLOv8 exhibits exceptional accuracy in overall detection and introduces a novel functionality for quantitative assessment of individual mites, providing essential granularity for precise diagnoses and therapeutic planning within dermatological and ophthalmological contexts. Positioned as a substantial advancement in object detection methodologies, YOLOv8 holds promise for significantly improving both accuracy and granularity in Demodex mite detection within microscopic examination images. While acknowledging potential limitations associated with dataset-specific considerations, this research underscores the imperative for further validation across diverse clinical scenarios. Computational considerations for real-time processing prompt future investigations to explore optimization strategies, particularly in resource-constrained environments. These findings position YOLOv8 as a valuable tool for clinicians and researchers engaged in dermatological and ophthalmological studies, offering heightened accuracy and nuanced insights. Ongoing research, encompassing clinical validations and comparative assessments with other state-of-the-art models, is anticipated to contribute to a more exhaustive understanding of YOLOv8's potential and limitations in real-world applications based on microscopic examination images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangqin发布了新的文献求助10
1秒前
一一完成签到,获得积分20
9秒前
在水一方应助莫里亚蒂采纳,获得10
9秒前
9秒前
18秒前
莫里亚蒂完成签到,获得积分20
19秒前
22秒前
莫里亚蒂发布了新的文献求助10
22秒前
洁白的故人完成签到 ,获得积分10
26秒前
郭志康发布了新的文献求助10
27秒前
27秒前
lzw发布了新的文献求助10
30秒前
33秒前
ceeray23应助科研通管家采纳,获得10
36秒前
JamesPei应助科研通管家采纳,获得10
37秒前
37秒前
43秒前
西北完成签到,获得积分10
47秒前
49秒前
西北发布了新的文献求助10
50秒前
lzw完成签到,获得积分10
50秒前
51秒前
57秒前
57秒前
幽壑之潜蛟应助gppdwyyx采纳,获得10
58秒前
yzhilson完成签到 ,获得积分10
1分钟前
岚12完成签到 ,获得积分10
1分钟前
酷波er应助西北采纳,获得10
1分钟前
乐观的饭饭完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
任性的冷梅完成签到,获得积分10
1分钟前
jyy应助失眠的数据线采纳,获得10
1分钟前
yema完成签到 ,获得积分10
1分钟前
木习习发布了新的文献求助10
1分钟前
kath发布了新的文献求助20
1分钟前
Jayden完成签到 ,获得积分10
1分钟前
1分钟前
wbs13521完成签到,获得积分10
1分钟前
云深完成签到 ,获得积分10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455612
求助须知:如何正确求助?哪些是违规求助? 3050832
关于积分的说明 9022844
捐赠科研通 2739392
什么是DOI,文献DOI怎么找? 1502707
科研通“疑难数据库(出版商)”最低求助积分说明 694586
邀请新用户注册赠送积分活动 693387