GDRS-YOLO: More Efficient Multiscale Features Fusion Object Detector for Remote Sensing Images

棱锥(几何) 特征(语言学) 计算机科学 特征提取 目标检测 对象(语法) 人工智能 公制(单位) 过程(计算) 卷积(计算机科学) 比例(比率) 遥感 卷积神经网络 数据挖掘 人工神经网络 模式识别(心理学) 数学 工程类 地理 语言学 哲学 运营管理 几何学 地图学 操作系统
作者
Yulong Lin,Jun Li,Shulong Shen,Hong Wang,Hongzhi Zhou
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5 被引量:3
标识
DOI:10.1109/lgrs.2024.3397717
摘要

The topic of object detection (OD) in remote sensing has received a lot of attention due to the rapid growth of deep learning. However, remote sensing (RS) images typically have the following characteristics: significant variations in object scales, tight arrangement of small objects, and indistinguishable feature boundaries between objects and backgrounds. These challenges lead to defects like insufficient feature extraction and information loss of the existing methods. To address the above issues, based on the YOLOv7 architecture, we present a novel object detection method named GDRS-YOLO. Our primary contributions include: firstly, an enhanced feature extraction network based on deformable convolution is proposed to improve the network's ability to model geometric transformations. Secondly, we abandoned the traditional feature pyramid architecture and construct a multi-scale feature aggregation network based on the Gather-and-Distribute mechanism, which makes effective use of the feature obtained from the backbone, and reduces the loss of information in the transmission process. Finally, the normalized Wasserstein distance (NWD) is introduced for hybrid loss training, which alleviates the sensitivity of the IoU-based metric to the location deviation of tiny objects. We demonstrate the effectiveness of GDRS-YOLO on the publicly available datasets NWPU VHR-10 and VisDrone datasets. Compared to the original YOLOv7, the proposed method improves the mean average precision (mAP) by 1.9% and 5.5%, respectively. These results emphasize the superior performance of the proposed model, which provides an efficient multi-scale feature fusion solution for remote sensing applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
缓慢如南应助科研通管家采纳,获得10
1秒前
缓慢如南应助科研通管家采纳,获得10
1秒前
古往今来应助科研通管家采纳,获得20
1秒前
邬不污完成签到,获得积分10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
2秒前
Hello应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
善学以致用应助科研畅行采纳,获得10
2秒前
完美世界应助ORG采纳,获得20
2秒前
fs发布了新的文献求助10
3秒前
3秒前
贪玩的听荷完成签到,获得积分10
3秒前
3秒前
jichups完成签到,获得积分10
4秒前
傲娇小馒头完成签到,获得积分10
4秒前
洋葱毛毛球完成签到,获得积分10
4秒前
pluto应助jiashan采纳,获得10
4秒前
元宝完成签到,获得积分10
4秒前
orixero应助草莓布丁采纳,获得30
5秒前
欢呼的方盒完成签到,获得积分10
7秒前
王不王发布了新的文献求助10
7秒前
常涑完成签到,获得积分10
7秒前
苏苏发布了新的文献求助10
8秒前
8秒前
勤奋的天亦完成签到,获得积分10
9秒前
123654完成签到 ,获得积分10
9秒前
fs完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
gnr2000发布了新的文献求助10
12秒前
evens发布了新的文献求助10
12秒前
米九完成签到,获得积分10
13秒前
紧张的铅笔完成签到,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986586
求助须知:如何正确求助?哪些是违规求助? 3529069
关于积分的说明 11242999
捐赠科研通 3267514
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881175
科研通“疑难数据库(出版商)”最低求助积分说明 808582