GDRS-YOLO: More Efficient Multiscale Features Fusion Object Detector for Remote Sensing Images

棱锥(几何) 特征(语言学) 计算机科学 特征提取 目标检测 对象(语法) 人工智能 公制(单位) 过程(计算) 卷积(计算机科学) 比例(比率) 遥感 卷积神经网络 数据挖掘 人工神经网络 模式识别(心理学) 数学 工程类 地理 语言学 哲学 运营管理 几何学 地图学 操作系统
作者
Yulong Lin,Jun Li,Shulong Shen,Hong Wang,Hongzhi Zhou
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5 被引量:2
标识
DOI:10.1109/lgrs.2024.3397717
摘要

The topic of object detection (OD) in remote sensing has received a lot of attention due to the rapid growth of deep learning. However, remote sensing (RS) images typically have the following characteristics: significant variations in object scales, tight arrangement of small objects, and indistinguishable feature boundaries between objects and backgrounds. These challenges lead to defects like insufficient feature extraction and information loss of the existing methods. To address the above issues, based on the YOLOv7 architecture, we present a novel object detection method named GDRS-YOLO. Our primary contributions include: firstly, an enhanced feature extraction network based on deformable convolution is proposed to improve the network's ability to model geometric transformations. Secondly, we abandoned the traditional feature pyramid architecture and construct a multi-scale feature aggregation network based on the Gather-and-Distribute mechanism, which makes effective use of the feature obtained from the backbone, and reduces the loss of information in the transmission process. Finally, the normalized Wasserstein distance (NWD) is introduced for hybrid loss training, which alleviates the sensitivity of the IoU-based metric to the location deviation of tiny objects. We demonstrate the effectiveness of GDRS-YOLO on the publicly available datasets NWPU VHR-10 and VisDrone datasets. Compared to the original YOLOv7, the proposed method improves the mean average precision (mAP) by 1.9% and 5.5%, respectively. These results emphasize the superior performance of the proposed model, which provides an efficient multi-scale feature fusion solution for remote sensing applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙兆杰发布了新的文献求助10
1秒前
共享精神应助壮观的晓露采纳,获得10
1秒前
ssk完成签到,获得积分10
4秒前
5秒前
老实的夜白完成签到 ,获得积分10
6秒前
6秒前
7秒前
莉芳发布了新的文献求助10
10秒前
MM完成签到 ,获得积分10
10秒前
10秒前
11秒前
无花果应助爱吃萝卜的Bob采纳,获得10
13秒前
粗暴的遥发布了新的文献求助30
13秒前
公主抡大锤完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
狂野的妙旋完成签到,获得积分10
18秒前
xuhang发布了新的文献求助10
19秒前
困敦发布了新的文献求助100
19秒前
浅唱完成签到,获得积分10
19秒前
嘚嘚嘚发布了新的文献求助10
20秒前
莉芳完成签到,获得积分20
20秒前
大个应助月颜采纳,获得10
22秒前
23秒前
23秒前
Xuekai发布了新的文献求助10
24秒前
24秒前
标致冰海发布了新的文献求助10
26秒前
英姑应助msl2023采纳,获得10
26秒前
26秒前
呼呼呼完成签到,获得积分10
28秒前
28秒前
28秒前
科研通AI2S应助细心雨兰采纳,获得10
28秒前
薰硝壤应助冷静的天佑采纳,获得10
29秒前
29秒前
朱朱完成签到,获得积分10
29秒前
eee7y发布了新的文献求助10
30秒前
奇奇奇很奇妙完成签到,获得积分10
31秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141417
求助须知:如何正确求助?哪些是违规求助? 2792460
关于积分的说明 7802814
捐赠科研通 2448645
什么是DOI,文献DOI怎么找? 1302695
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237