肌成纤维细胞
成纤维细胞
细胞生物学
纤维化
旁分泌信号
纤维连接蛋白
细胞外基质
上皮-间质转换
电池类型
化学
收缩(语法)
细胞培养
细胞
病理
生物
医学
下调和上调
内分泌学
生物化学
受体
基因
遗传学
作者
Xiaoning Han,Lele Xu,Ting Dou,Rong Du,Linhong Deng,Xiang Wang
出处
期刊:ACS Biomaterials Science & Engineering
[American Chemical Society]
日期:2023-07-07
卷期号:9 (8): 4846-4854
标识
DOI:10.1021/acsbiomaterials.2c01502
摘要
Cell-generated contraction force is the primary physical drive for fibrotic densification of biological tissues. Previous studies using two-dimensional culture models have shown that epithelial cells inhibit the myofibroblast-derived contraction force via the regulation of the fibroblast/myofibroblast transition (FMT). However, it remains unclear how epithelial cells interact with fibroblasts and myofibroblasts to determine the mechanical consequences and spatiotemporal regulation of fibrosis development. In this study, we established a three-dimensional microtissue model using an NIH/3T3 fibroblast-laden collagen hydrogel, incorporated with a microstring-based force sensor, to assess fibrosis mechanics. When Madin-Darby canine kidney epithelial cells were cocultured on the microtissue's surface, the densification, stiffness, and contraction force of the microtissue greatly decreased compared to the monocultured microtissue without epithelial cells. The key fibrotic features, such as enhanced protein expression of α-smooth muscle actin, fibronectin, and collagen indicating FMT and matrix deposition, respectively, were also significantly reduced. The antifibrotic effects of epithelial cells on the microtissue were dependent on the intercellular signaling molecule prostaglandin E2 (PGE2) with an effective concentration of 10 μM and their proximity to the fibroblasts, indicating paracrine cellular signaling between the two types of cells during tissue fibrosis. The effect of PGE2 on microtissue contraction was also dependent on the time point when PGE2 was delivered or blocked, suggesting that the presence of epithelial cells at an early stage is critical for preventing or treating advanced fibrosis. Taken together, this study provides insights into the spatiotemporal regulation of mechanical properties of fibrosis by epithelial cells, and the cocultured microtissue model incorporated with a real-time and sensitive force sensor will be a suitable system for evaluating fibrosis and drug screening.
科研通智能强力驱动
Strongly Powered by AbleSci AI