亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CBPH-Net: A Small Object Detector for Behavior Recognition in Classroom Scenarios

计算机科学 人工智能 块(置换群论) 模式识别(心理学) 帧(网络) 骨干网 相似性(几何) 卷积神经网络 基本事实 解析 特征提取 探测器 目标检测 对象(语法) 网(多面体) 延迟(音频) 计算机视觉 图像(数学) 电信 数学 计算机网络 几何学
作者
Jinhua Zhao,Hongye Zhu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:36
标识
DOI:10.1109/tim.2023.3296124
摘要

Recognizing classroom behavior is crucial for assessing and improving teaching quality. However, existing methods for behavior recognition have limited accuracy due to issues such as occlusions, pose variations, and inconsistent target scales. To address these challenges, we propose an advanced single-stage object detector called CBPH-Net. Specifically, we design an efficient Feature Extraction Module (FEM) to capture more channel information and relevant features from the images in the backbone network. The neck network combines the PANet architecture and Coordinate Attention (CA) to integrate semantic and positional information and suppress irrelevant background information, enabling the network to accurately locate students. ConvNeXt Block Prediction Head (CBPH) utilizes convolutional kernels of different sizes and parsing multi-scale features to enhance the multi-scale recognition capability of CBPH-Net especially for accurate detection of small objects. To reduce the influence of irrelevant background, we use elliptical boxes instead of rectangular boxes when calculating the similarity between ground truth and predicted values. In addition, we construct a dataset named STBD-08 that contains 4432 images with 151574 labeled anchors covering 8 typical classroom behaviors. On the proposed dataset STBD-08, CBPH-Net achieves mean average precision (mAP) of 87.5% (an improvement of 3.4% compared to YOLOv5 and 1.2% compared to YOLOv7). It processes one frame with the latency of 31.3ms (1ms slower than YOLOv5 and 5.3ms faster than YOLOv7). Moreover, it achieves a precision of 75.7% in small object recognition, surpassing all comparative methods. The experimental results demonstrate that CBPH-Net can be efficiently applied to classroom behavior recognition tasks. Codes and datasets are available at: https://github.com/icedle/CBPH-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
老石完成签到 ,获得积分10
11秒前
13秒前
Yuanyuan发布了新的文献求助10
14秒前
37秒前
朝雪关注了科研通微信公众号
43秒前
Yuanyuan发布了新的文献求助10
44秒前
朝雪完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
arniu2008完成签到,获得积分20
1分钟前
科研通AI6.1应助曾经问雁采纳,获得30
1分钟前
1分钟前
BowieHuang应助arniu2008采纳,获得10
2分钟前
sophy完成签到,获得积分20
2分钟前
在喝咖啡ing完成签到,获得积分10
2分钟前
Yuanyuan发布了新的文献求助10
2分钟前
简单发布了新的文献求助20
2分钟前
lovelife完成签到,获得积分10
2分钟前
qsxy发布了新的文献求助100
3分钟前
老老熊完成签到,获得积分10
3分钟前
3分钟前
qsxy完成签到,获得积分10
3分钟前
CodeCraft应助科研通管家采纳,获得10
3分钟前
3分钟前
小刘小刘发布了新的文献求助80
3分钟前
CodeCraft应助痴情的诗槐采纳,获得10
3分钟前
简单完成签到,获得积分20
3分钟前
小马甲应助小刘小刘采纳,获得10
4分钟前
4分钟前
Yuanyuan发布了新的文献求助10
4分钟前
4分钟前
Re完成签到 ,获得积分10
4分钟前
Yuanyuan发布了新的文献求助10
4分钟前
4分钟前
4分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788771
求助须知:如何正确求助?哪些是违规求助? 5711930
关于积分的说明 15473908
捐赠科研通 4916776
什么是DOI,文献DOI怎么找? 2646575
邀请新用户注册赠送积分活动 1594240
关于科研通互助平台的介绍 1548666