CBPH-Net: A Small Object Detector for Behavior Recognition in Classroom Scenarios

计算机科学 人工智能 块(置换群论) 模式识别(心理学) 帧(网络) 骨干网 相似性(几何) 卷积神经网络 基本事实 解析 特征提取 探测器 目标检测 对象(语法) 网(多面体) 延迟(音频) 计算机视觉 图像(数学) 电信 数学 计算机网络 几何学
作者
Jinhua Zhao,Hongye Zhu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:18
标识
DOI:10.1109/tim.2023.3296124
摘要

Recognizing classroom behavior is crucial for assessing and improving teaching quality. However, existing methods for behavior recognition have limited accuracy due to issues such as occlusions, pose variations, and inconsistent target scales. To address these challenges, we propose an advanced single-stage object detector called CBPH-Net. Specifically, we design an efficient Feature Extraction Module (FEM) to capture more channel information and relevant features from the images in the backbone network. The neck network combines the PANet architecture and Coordinate Attention (CA) to integrate semantic and positional information and suppress irrelevant background information, enabling the network to accurately locate students. ConvNeXt Block Prediction Head (CBPH) utilizes convolutional kernels of different sizes and parsing multi-scale features to enhance the multi-scale recognition capability of CBPH-Net especially for accurate detection of small objects. To reduce the influence of irrelevant background, we use elliptical boxes instead of rectangular boxes when calculating the similarity between ground truth and predicted values. In addition, we construct a dataset named STBD-08 that contains 4432 images with 151574 labeled anchors covering 8 typical classroom behaviors. On the proposed dataset STBD-08, CBPH-Net achieves mean average precision (mAP) of 87.5% (an improvement of 3.4% compared to YOLOv5 and 1.2% compared to YOLOv7). It processes one frame with the latency of 31.3ms (1ms slower than YOLOv5 and 5.3ms faster than YOLOv7). Moreover, it achieves a precision of 75.7% in small object recognition, surpassing all comparative methods. The experimental results demonstrate that CBPH-Net can be efficiently applied to classroom behavior recognition tasks. Codes and datasets are available at: https://github.com/icedle/CBPH-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
You发布了新的文献求助10
刚刚
刚刚
上官若男应助QIANGYI采纳,获得10
1秒前
跳跃雨泽发布了新的文献求助10
1秒前
CodeCraft应助微笑的白柏采纳,获得10
2秒前
2秒前
2秒前
xbb88完成签到,获得积分10
2秒前
ForTune发布了新的文献求助10
2秒前
2秒前
大个应助包容的绿蕊采纳,获得10
2秒前
yangyang完成签到,获得积分10
2秒前
朴实千筹发布了新的文献求助10
3秒前
3秒前
4秒前
陈甜甜完成签到,获得积分10
4秒前
熊猫完成签到,获得积分10
4秒前
桐桐应助年轻寒蕾采纳,获得10
5秒前
5秒前
5秒前
传奇3应助123采纳,获得10
5秒前
领导范儿应助123采纳,获得10
5秒前
我不是BOB完成签到,获得积分10
6秒前
6秒前
7秒前
开朗孤菱发布了新的文献求助10
7秒前
7秒前
bkagyin应助跳跃雨泽采纳,获得10
7秒前
螺蛳粉完成签到,获得积分10
7秒前
大个应助非也的非也采纳,获得10
7秒前
加缪发布了新的文献求助10
7秒前
我是老大应助黎簇采纳,获得10
8秒前
8秒前
tanwenbin完成签到,获得积分10
8秒前
Ryne完成签到 ,获得积分10
8秒前
高高完成签到,获得积分10
9秒前
9秒前
9秒前
南岸未阴发布了新的文献求助10
10秒前
hzx发布了新的文献求助10
10秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5205682
求助须知:如何正确求助?哪些是违规求助? 4384419
关于积分的说明 13652819
捐赠科研通 4242511
什么是DOI,文献DOI怎么找? 2327518
邀请新用户注册赠送积分活动 1325287
关于科研通互助平台的介绍 1277428