CBPH-Net: A Small Object Detector for Behavior Recognition in Classroom Scenarios

计算机科学 人工智能 块(置换群论) 模式识别(心理学) 帧(网络) 骨干网 相似性(几何) 卷积神经网络 基本事实 解析 特征提取 探测器 目标检测 对象(语法) 网(多面体) 延迟(音频) 计算机视觉 图像(数学) 电信 计算机网络 几何学 数学
作者
Jinhua Zhao,Hongye Zhu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:36
标识
DOI:10.1109/tim.2023.3296124
摘要

Recognizing classroom behavior is crucial for assessing and improving teaching quality. However, existing methods for behavior recognition have limited accuracy due to issues such as occlusions, pose variations, and inconsistent target scales. To address these challenges, we propose an advanced single-stage object detector called CBPH-Net. Specifically, we design an efficient Feature Extraction Module (FEM) to capture more channel information and relevant features from the images in the backbone network. The neck network combines the PANet architecture and Coordinate Attention (CA) to integrate semantic and positional information and suppress irrelevant background information, enabling the network to accurately locate students. ConvNeXt Block Prediction Head (CBPH) utilizes convolutional kernels of different sizes and parsing multi-scale features to enhance the multi-scale recognition capability of CBPH-Net especially for accurate detection of small objects. To reduce the influence of irrelevant background, we use elliptical boxes instead of rectangular boxes when calculating the similarity between ground truth and predicted values. In addition, we construct a dataset named STBD-08 that contains 4432 images with 151574 labeled anchors covering 8 typical classroom behaviors. On the proposed dataset STBD-08, CBPH-Net achieves mean average precision (mAP) of 87.5% (an improvement of 3.4% compared to YOLOv5 and 1.2% compared to YOLOv7). It processes one frame with the latency of 31.3ms (1ms slower than YOLOv5 and 5.3ms faster than YOLOv7). Moreover, it achieves a precision of 75.7% in small object recognition, surpassing all comparative methods. The experimental results demonstrate that CBPH-Net can be efficiently applied to classroom behavior recognition tasks. Codes and datasets are available at: https://github.com/icedle/CBPH-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
景吉梅发布了新的文献求助10
刚刚
八戒发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
小蘑菇应助李海带采纳,获得10
1秒前
2秒前
Yu发布了新的文献求助10
3秒前
4秒前
4秒前
生动芷完成签到,获得积分10
4秒前
5秒前
5秒前
Karma完成签到,获得积分10
5秒前
Oz发布了新的文献求助10
6秒前
tachang发布了新的文献求助10
6秒前
6秒前
6秒前
shilly发布了新的文献求助10
6秒前
达雨发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
Aleksibob发布了新的文献求助10
7秒前
8秒前
Ava应助程九岁采纳,获得20
10秒前
11秒前
lsy发布了新的文献求助10
11秒前
11秒前
善学以致用应助范1采纳,获得10
12秒前
12秒前
星辰大海应助胡萝卜采纳,获得10
13秒前
姚盈盈发布了新的文献求助10
13秒前
地啦啦啦完成签到,获得积分20
14秒前
FOODHUA发布了新的文献求助10
14秒前
胡橘子完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
山羊8201完成签到,获得积分10
16秒前
Aleksibob完成签到,获得积分20
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578106
求助须知:如何正确求助?哪些是违规求助? 4663067
关于积分的说明 14744528
捐赠科研通 4603755
什么是DOI,文献DOI怎么找? 2526647
邀请新用户注册赠送积分活动 1496234
关于科研通互助平台的介绍 1465674