CBPH-Net: A Small Object Detector for Behavior Recognition in Classroom Scenarios

计算机科学 人工智能 块(置换群论) 模式识别(心理学) 帧(网络) 骨干网 相似性(几何) 卷积神经网络 基本事实 解析 特征提取 探测器 目标检测 对象(语法) 网(多面体) 延迟(音频) 计算机视觉 图像(数学) 电信 数学 计算机网络 几何学
作者
Jinhua Zhao,Hongye Zhu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:18
标识
DOI:10.1109/tim.2023.3296124
摘要

Recognizing classroom behavior is crucial for assessing and improving teaching quality. However, existing methods for behavior recognition have limited accuracy due to issues such as occlusions, pose variations, and inconsistent target scales. To address these challenges, we propose an advanced single-stage object detector called CBPH-Net. Specifically, we design an efficient Feature Extraction Module (FEM) to capture more channel information and relevant features from the images in the backbone network. The neck network combines the PANet architecture and Coordinate Attention (CA) to integrate semantic and positional information and suppress irrelevant background information, enabling the network to accurately locate students. ConvNeXt Block Prediction Head (CBPH) utilizes convolutional kernels of different sizes and parsing multi-scale features to enhance the multi-scale recognition capability of CBPH-Net especially for accurate detection of small objects. To reduce the influence of irrelevant background, we use elliptical boxes instead of rectangular boxes when calculating the similarity between ground truth and predicted values. In addition, we construct a dataset named STBD-08 that contains 4432 images with 151574 labeled anchors covering 8 typical classroom behaviors. On the proposed dataset STBD-08, CBPH-Net achieves mean average precision (mAP) of 87.5% (an improvement of 3.4% compared to YOLOv5 and 1.2% compared to YOLOv7). It processes one frame with the latency of 31.3ms (1ms slower than YOLOv5 and 5.3ms faster than YOLOv7). Moreover, it achieves a precision of 75.7% in small object recognition, surpassing all comparative methods. The experimental results demonstrate that CBPH-Net can be efficiently applied to classroom behavior recognition tasks. Codes and datasets are available at: https://github.com/icedle/CBPH-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
棒棒羊完成签到,获得积分10
刚刚
mmm4完成签到 ,获得积分10
1秒前
搜索文献发布了新的文献求助10
2秒前
2秒前
2秒前
汉堡包应助肥肠的枣糕啊采纳,获得10
2秒前
pangboo发布了新的文献求助20
3秒前
4秒前
4秒前
Hcr发布了新的文献求助30
5秒前
李爱国应助年轻的夕阳采纳,获得10
6秒前
7秒前
我是屈原在世完成签到,获得积分10
7秒前
8秒前
8秒前
南橘完成签到,获得积分10
8秒前
笨笨发布了新的文献求助10
8秒前
脑洞疼应助超级煎饼采纳,获得10
8秒前
魔幻灵竹发布了新的文献求助50
8秒前
9秒前
小马甲应助甜甜亦丝采纳,获得10
9秒前
科研通AI5应助小郭采纳,获得10
10秒前
11秒前
tao发布了新的文献求助10
12秒前
刘建伟发布了新的文献求助10
12秒前
Orange应助谨慎的雨梅采纳,获得10
12秒前
13秒前
13秒前
WJ完成签到,获得积分10
13秒前
成就的艳一应助zz采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
可爱的函函应助浪里白条采纳,获得10
14秒前
14秒前
Jasper应助chechang采纳,获得10
14秒前
am完成签到,获得积分10
15秒前
15秒前
15秒前
笨笨完成签到,获得积分10
15秒前
研友_nEWaD8发布了新的文献求助10
16秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125100
求助须知:如何正确求助?哪些是违规求助? 4329107
关于积分的说明 13489886
捐赠科研通 4163829
什么是DOI,文献DOI怎么找? 2282591
邀请新用户注册赠送积分活动 1283707
关于科研通互助平台的介绍 1222983