CBPH-Net: A Small Object Detector for Behavior Recognition in Classroom Scenarios

计算机科学 人工智能 块(置换群论) 模式识别(心理学) 帧(网络) 骨干网 相似性(几何) 卷积神经网络 基本事实 解析 特征提取 探测器 目标检测 对象(语法) 网(多面体) 延迟(音频) 计算机视觉 图像(数学) 电信 数学 计算机网络 几何学
作者
Jinhua Zhao,Hongye Zhu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:18
标识
DOI:10.1109/tim.2023.3296124
摘要

Recognizing classroom behavior is crucial for assessing and improving teaching quality. However, existing methods for behavior recognition have limited accuracy due to issues such as occlusions, pose variations, and inconsistent target scales. To address these challenges, we propose an advanced single-stage object detector called CBPH-Net. Specifically, we design an efficient Feature Extraction Module (FEM) to capture more channel information and relevant features from the images in the backbone network. The neck network combines the PANet architecture and Coordinate Attention (CA) to integrate semantic and positional information and suppress irrelevant background information, enabling the network to accurately locate students. ConvNeXt Block Prediction Head (CBPH) utilizes convolutional kernels of different sizes and parsing multi-scale features to enhance the multi-scale recognition capability of CBPH-Net especially for accurate detection of small objects. To reduce the influence of irrelevant background, we use elliptical boxes instead of rectangular boxes when calculating the similarity between ground truth and predicted values. In addition, we construct a dataset named STBD-08 that contains 4432 images with 151574 labeled anchors covering 8 typical classroom behaviors. On the proposed dataset STBD-08, CBPH-Net achieves mean average precision (mAP) of 87.5% (an improvement of 3.4% compared to YOLOv5 and 1.2% compared to YOLOv7). It processes one frame with the latency of 31.3ms (1ms slower than YOLOv5 and 5.3ms faster than YOLOv7). Moreover, it achieves a precision of 75.7% in small object recognition, surpassing all comparative methods. The experimental results demonstrate that CBPH-Net can be efficiently applied to classroom behavior recognition tasks. Codes and datasets are available at: https://github.com/icedle/CBPH-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
FIN应助木木采纳,获得20
刚刚
hzt发布了新的文献求助10
刚刚
HBY完成签到,获得积分10
1秒前
xiaobin发布了新的文献求助10
1秒前
Orange应助背后如之采纳,获得10
1秒前
后海小鲨鱼完成签到 ,获得积分10
1秒前
小晚风完成签到,获得积分10
1秒前
wanci应助GUANG采纳,获得10
2秒前
2秒前
3秒前
3秒前
4秒前
Lhb发布了新的文献求助10
4秒前
syalonyui完成签到,获得积分10
4秒前
5秒前
NexusExplorer应助阿维里奥采纳,获得10
5秒前
mutou完成签到,获得积分20
5秒前
Kir完成签到,获得积分10
5秒前
lll完成签到,获得积分10
5秒前
5秒前
6秒前
彭于彦祖应助顾海东采纳,获得30
6秒前
6秒前
7秒前
梁芳云完成签到,获得积分10
7秒前
星辰大海应助学无止境采纳,获得30
8秒前
英姑应助xkh采纳,获得10
9秒前
Mike发布了新的文献求助10
9秒前
9秒前
懵懂的寻冬应助竼竼采纳,获得10
9秒前
绊宸完成签到,获得积分10
9秒前
mutou发布了新的文献求助10
10秒前
野风车发布了新的文献求助10
10秒前
梁芳云发布了新的文献求助10
11秒前
fbwg发布了新的文献求助10
11秒前
FashionBoy应助迷路的煎蛋采纳,获得10
11秒前
小鲨鱼发布了新的文献求助10
12秒前
12秒前
大小罐子发布了新的文献求助20
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009765
求助须知:如何正确求助?哪些是违规求助? 3549723
关于积分的说明 11303208
捐赠科研通 3284239
什么是DOI,文献DOI怎么找? 1810545
邀请新用户注册赠送积分活动 886356
科研通“疑难数据库(出版商)”最低求助积分说明 811355