CBPH-Net: A Small Object Detector for Behavior Recognition in Classroom Scenarios

计算机科学 人工智能 块(置换群论) 模式识别(心理学) 帧(网络) 骨干网 相似性(几何) 卷积神经网络 基本事实 解析 特征提取 探测器 目标检测 对象(语法) 网(多面体) 延迟(音频) 计算机视觉 图像(数学) 电信 计算机网络 几何学 数学
作者
Jinhua Zhao,Hongye Zhu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:72: 1-12 被引量:18
标识
DOI:10.1109/tim.2023.3296124
摘要

Recognizing classroom behavior is crucial for assessing and improving teaching quality. However, existing methods for behavior recognition have limited accuracy due to issues such as occlusions, pose variations, and inconsistent target scales. To address these challenges, we propose an advanced single-stage object detector called CBPH-Net. Specifically, we design an efficient Feature Extraction Module (FEM) to capture more channel information and relevant features from the images in the backbone network. The neck network combines the PANet architecture and Coordinate Attention (CA) to integrate semantic and positional information and suppress irrelevant background information, enabling the network to accurately locate students. ConvNeXt Block Prediction Head (CBPH) utilizes convolutional kernels of different sizes and parsing multi-scale features to enhance the multi-scale recognition capability of CBPH-Net especially for accurate detection of small objects. To reduce the influence of irrelevant background, we use elliptical boxes instead of rectangular boxes when calculating the similarity between ground truth and predicted values. In addition, we construct a dataset named STBD-08 that contains 4432 images with 151574 labeled anchors covering 8 typical classroom behaviors. On the proposed dataset STBD-08, CBPH-Net achieves mean average precision (mAP) of 87.5% (an improvement of 3.4% compared to YOLOv5 and 1.2% compared to YOLOv7). It processes one frame with the latency of 31.3ms (1ms slower than YOLOv5 and 5.3ms faster than YOLOv7). Moreover, it achieves a precision of 75.7% in small object recognition, surpassing all comparative methods. The experimental results demonstrate that CBPH-Net can be efficiently applied to classroom behavior recognition tasks. Codes and datasets are available at: https://github.com/icedle/CBPH-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
2秒前
小杭76应助lina采纳,获得10
3秒前
欢呼的雨琴完成签到 ,获得积分10
4秒前
嘉悦发布了新的文献求助10
4秒前
sun448526发布了新的文献求助10
5秒前
xyt625完成签到,获得积分10
8秒前
9秒前
cquank完成签到,获得积分10
9秒前
9秒前
12秒前
12秒前
12秒前
13秒前
木马瑶发布了新的文献求助10
14秒前
土豆发布了新的文献求助10
14秒前
AYJ应助sun448526采纳,获得10
14秒前
凶狠的姚完成签到 ,获得积分10
15秒前
Hx完成签到,获得积分10
16秒前
DUDU发布了新的文献求助10
16秒前
17秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
斧王发布了新的文献求助10
18秒前
Claudia黄完成签到,获得积分10
19秒前
21秒前
22秒前
一颗葡萄完成签到,获得积分10
23秒前
庄博一完成签到,获得积分10
24秒前
慢慢发布了新的文献求助10
25秒前
佛系发布了新的文献求助10
25秒前
慕青应助舒心的秋荷采纳,获得10
26秒前
26秒前
木马瑶完成签到,获得积分20
27秒前
DUDU完成签到,获得积分10
27秒前
清风明月应助Nymeria采纳,获得10
28秒前
yvonnecao完成签到,获得积分10
28秒前
28秒前
xzy998应助lina采纳,获得10
31秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431754
求助须知:如何正确求助?哪些是违规求助? 4544599
关于积分的说明 14193134
捐赠科研通 4463678
什么是DOI,文献DOI怎么找? 2446845
邀请新用户注册赠送积分活动 1438154
关于科研通互助平台的介绍 1414878