The effects of socioeconomic factors on particulate matter concentration in China's: New evidence from spatial econometric model

面板数据 社会经济地位 空间分析 微粒 计量经济模型 空间计量经济学 污染物 中国 城市化 地理 空气污染 环境科学 计量经济学 环境卫生 经济 经济增长 人口 生态学 生物 医学 考古 遥感
作者
Uzair Aslam Bhatti,Shah Marjan,Abdul Wahid,M.S. Syam,Mengxing Huang,Hao Tang,Ahmad Hasnain
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:417: 137969-137969 被引量:34
标识
DOI:10.1016/j.jclepro.2023.137969
摘要

As a result of rapid industrialization and urbanization, China is now facing a host of environmental problems that have serious health implications. Studies of air pollution's impact on human health are vital in many fields, including epidemiology, environmental science, and the social sciences. To ensure the effective growth of socioeconomic sectors, it is critical to investigate the effect of socioeconomic factors on primary air pollutant particulate matter (PM2.5) and the driving mechanism. We conducted group-wise (i.,e. divide data in 5 different periods, D1 (2002–2006), D2 (2007–2011), D3 (2012–2016), D4 (2017–2021) and D5(2002–2021) spatial autocorrelation and spatial panel regression analyses of PM2.5 emissions using panel data from 34 provincial-level administrative units in China from 2002 to 2021 to understand the factors influencing air pollutant emissions. This study adds to the literature by considering comprehensive features and spatial effects in the panel-data econometric framework of the different areas. The spatial features analysis reveals that pollutant emissions in these regions decreased during the study period, although socioeconomic and natural factors are essential sources of PM2.5. PM2.5 emissions also showed significant positive spatial autocorrelations. Several statistical tests were run to examine the spatial autocorrelation among the regions. The results of a random effect regression model and geometric weighted regression (GWR) revealed that both socioeconomic and natural factors were statistically significant for PM2.5, though to varying degrees depending on region type. Positive and statistically significant results were obtained for China when considering the impacts of urban population, urban green space, economic growth, and economic spending. China has a positive and significant link with the exploitation of energy and natural resources. In light of these findings, we have developed several ideas for addressing air pollution and improving environmental sustainability, such as increasing regional collaboration and reforming the economy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yon完成签到 ,获得积分10
刚刚
呆头完成签到,获得积分10
刚刚
科研通AI5应助skier采纳,获得10
1秒前
ywang发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
keyantong完成签到 ,获得积分10
7秒前
booshu完成签到,获得积分10
8秒前
jy发布了新的文献求助10
9秒前
朴斓完成签到,获得积分10
9秒前
科研通AI5应助魏伯安采纳,获得10
12秒前
哈密哈密完成签到,获得积分10
12秒前
12秒前
Ava应助浪迹天涯采纳,获得10
12秒前
13秒前
安南发布了新的文献求助10
13秒前
14秒前
healthy完成签到 ,获得积分10
14秒前
15秒前
刘大可完成签到,获得积分10
15秒前
18秒前
su发布了新的文献求助10
18秒前
rookie发布了新的文献求助10
19秒前
方勇飞发布了新的文献求助10
20秒前
郭菱香完成签到 ,获得积分20
20秒前
皮念寒完成签到,获得积分10
20秒前
顺其自然_666888完成签到,获得积分10
20秒前
21秒前
向上的小v完成签到 ,获得积分10
22秒前
22秒前
24秒前
酷酷紫蓝完成签到 ,获得积分10
24秒前
24秒前
方勇飞完成签到,获得积分10
24秒前
LYZ完成签到,获得积分10
24秒前
黄景滨完成签到 ,获得积分20
25秒前
25秒前
123456完成签到,获得积分20
25秒前
hkl1542完成签到,获得积分10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824