共晶体系
熔点
热力学
焓
化学
电解质
差示扫描量热法
混合(物理)
混合焓
混合熵
分子
吉布斯自由能
物理化学
结晶学
有机化学
微观结构
物理
电极
量子力学
作者
Antonio Baclig,Devi Ganapathi,Victoria Ng,Emily Penn,Jonathan Saathoff,William C. Chueh
标识
DOI:10.1021/acs.jpcb.3c01125
摘要
Decreasing the melting point (Tm) of a mixture is of interest in cryopreservatives, molten salts, and battery electrolytes. One general strategy to decrease Tm, exemplified by deep eutectic solvents, is to mix components with favorable (negative) enthalpic interactions. We demonstrate a complementary strategy to decrease Tm by mixing many components with neutral or slightly positive enthalpic interactions, using the number of components (n) to increase the entropy of mixing and decrease Tm. In theory, under certain conditions this approach could achieve an arbitrarily low Tm. Furthermore, if the components are small redox-active molecules, such as the benzoquinones studied here, this approach could lead to high energy density flow battery electrolytes. Finding the eutectic composition of a high-n mixture can be challenging due to the large compositional space yet is essential for ensuring the existence of a purely liquid phase. We reformulate and apply fundamental thermodynamic equations to describe high-n eutectic mixtures of small redox-active molecules (benzoquinones and hydroquinones). We illustrate a novel application of this theory by tuning the entropy of melting, rather than the enthalpy, in systems highly relevant to energy storage. We demonstrate with differential scanning calorimetry measurements that 1,4-benzoquinone derivatives exhibit eutectic mixing that decreases their Tm, despite slightly positive enthalpies of mixing (0-5 kJ/mol). By rigorously investigating all 21 binary mixtures of a set of seven 1,4-benzoquinone derivatives with alkyl substituents (Tm's between 44 and 120 °C), we find that the eutectic melting point of a mixture of all seven achieves a large decrease in Tm to -6 °C. We further determine that the regular solution model shows improvement over an ideal solution model in predicting the eutectic properties for this newly investigated type of mixture composed of many small redox-active organic molecules.
科研通智能强力驱动
Strongly Powered by AbleSci AI