亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Review of Drug-related Associations Prediction Based on Artificial Intelligence Methods

人工智能 机器学习 计算机科学 相似性(几何) 药物发现 药品 药物靶点 药物开发 数据科学 生物信息学 医学 生物 药理学 图像(数学) 精神科
作者
Mei Ma,Xiujuan Lei,Yuchen Zhang
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:19 (6): 530-550
标识
DOI:10.2174/1574893618666230707123817
摘要

Background: Predicting drug-related associations is an important task in drug development and discovery. With the rapid advancement of high-throughput technologies and various biological and medical data, artificial intelligence (AI), especially progress in machine learning (ML) and deep learning (DL), has paved a new way for the development of drug-related associations prediction. Many studies have been conducted in the literature to predict drug-related associations. This study looks at various computational methods used for drug-related associations prediction with the hope of getting a better insight into the computational methods used. Methods: The various computational methods involved in drug-related associations prediction have been reviewed in this work. We have first summarized the drug, target, and disease-related mainstream public datasets. Then, we have discussed existing drug similarity, target similarity, and integrated similarity measurement approaches and grouped them according to their suitability. We have then comprehensively investigated drug-related associations and introduced relevant computational methods. Finally, we have briefly discussed the challenges involved in predicting drug-related associations. Result: We discovered that quite a few studies have used implemented ML and DL approaches for drug-related associations prediction. The key challenges were well noted in constructing datasets with reasonable negative samples, extracting rich features, and developing powerful prediction models or ensemble strategies. Conclusion: This review presents useful knowledge and future challenges on the subject matter with the hope of promoting further studies on predicting drug-related associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大胆的碧菡完成签到,获得积分10
刚刚
wangji完成签到,获得积分20
5秒前
10秒前
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
情怀应助坚强的唇膏采纳,获得10
15秒前
16秒前
余念安完成签到 ,获得积分10
19秒前
Dietetykza5zl发布了新的文献求助10
21秒前
安安完成签到 ,获得积分10
25秒前
25秒前
Felix发布了新的文献求助10
28秒前
Jenny发布了新的文献求助30
29秒前
哇呀呀完成签到 ,获得积分10
30秒前
31秒前
康康XY完成签到 ,获得积分10
37秒前
38秒前
38秒前
lyw发布了新的文献求助10
42秒前
Jenny完成签到,获得积分10
47秒前
47秒前
丘比特应助Dietetykza5zl采纳,获得10
57秒前
桃子e发布了新的文献求助10
1分钟前
丸子完成签到 ,获得积分10
1分钟前
徐cc完成签到 ,获得积分10
1分钟前
搜集达人应助tRNA采纳,获得10
1分钟前
1分钟前
Criminology34应助谨慎的夏采纳,获得10
1分钟前
yuu完成签到 ,获得积分10
1分钟前
iman完成签到,获得积分10
1分钟前
谨慎的夏完成签到,获得积分10
1分钟前
yangzai完成签到 ,获得积分0
1分钟前
yttttt发布了新的文献求助10
1分钟前
李爱国应助桃子e采纳,获得10
1分钟前
cnspower应助开心小诺采纳,获得10
1分钟前
彭于晏应助宇文宛菡采纳,获得10
1分钟前
七大洋的风完成签到,获得积分10
1分钟前
1分钟前
喝橙汁儿吗完成签到 ,获得积分10
1分钟前
桃子e发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788218
求助须知:如何正确求助?哪些是违规求助? 5705246
关于积分的说明 15473310
捐赠科研通 4916338
什么是DOI,文献DOI怎么找? 2646295
邀请新用户注册赠送积分活动 1593951
关于科研通互助平台的介绍 1548328