A Review of Drug-related Associations Prediction Based on Artificial Intelligence Methods

人工智能 机器学习 计算机科学 相似性(几何) 药物发现 药品 药物靶点 药物开发 数据科学 生物信息学 医学 生物 药理学 图像(数学) 精神科
作者
Mei Ma,Xiujuan Lei,Yuchen Zhang
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:19 (6): 530-550
标识
DOI:10.2174/1574893618666230707123817
摘要

Background: Predicting drug-related associations is an important task in drug development and discovery. With the rapid advancement of high-throughput technologies and various biological and medical data, artificial intelligence (AI), especially progress in machine learning (ML) and deep learning (DL), has paved a new way for the development of drug-related associations prediction. Many studies have been conducted in the literature to predict drug-related associations. This study looks at various computational methods used for drug-related associations prediction with the hope of getting a better insight into the computational methods used. Methods: The various computational methods involved in drug-related associations prediction have been reviewed in this work. We have first summarized the drug, target, and disease-related mainstream public datasets. Then, we have discussed existing drug similarity, target similarity, and integrated similarity measurement approaches and grouped them according to their suitability. We have then comprehensively investigated drug-related associations and introduced relevant computational methods. Finally, we have briefly discussed the challenges involved in predicting drug-related associations. Result: We discovered that quite a few studies have used implemented ML and DL approaches for drug-related associations prediction. The key challenges were well noted in constructing datasets with reasonable negative samples, extracting rich features, and developing powerful prediction models or ensemble strategies. Conclusion: This review presents useful knowledge and future challenges on the subject matter with the hope of promoting further studies on predicting drug-related associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
amor发布了新的文献求助10
刚刚
桐桐应助cindy5620采纳,获得10
1秒前
科研通AI5应助嘿嘿嘿采纳,获得10
1秒前
2秒前
ding应助北风语采纳,获得10
2秒前
烟花应助幽默阑悦采纳,获得10
2秒前
可爱背包发布了新的文献求助10
3秒前
科研通AI5应助11采纳,获得10
3秒前
3秒前
4秒前
5秒前
5秒前
7秒前
临澈完成签到,获得积分10
7秒前
cherish发布了新的文献求助10
7秒前
7秒前
9秒前
赘婿应助丽娜采纳,获得10
9秒前
10秒前
Galaxy发布了新的文献求助10
10秒前
10秒前
lxg发布了新的文献求助10
10秒前
10秒前
共享精神应助可爱背包采纳,获得10
11秒前
Hello应助乐观的从云采纳,获得10
11秒前
12秒前
yan完成签到,获得积分10
12秒前
xx发布了新的文献求助10
13秒前
凉薄发布了新的文献求助10
14秒前
鲁西西在学习完成签到,获得积分10
14秒前
森屿海港发布了新的文献求助10
16秒前
xiadu完成签到 ,获得积分10
16秒前
二十六折发布了新的文献求助10
16秒前
YIDAN发布了新的文献求助10
16秒前
chhe发布了新的文献求助10
17秒前
17秒前
淡淡的香完成签到 ,获得积分10
17秒前
打打应助怕孤独的小鸭子采纳,获得10
18秒前
18秒前
19秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208415
求助须知:如何正确求助?哪些是违规求助? 4385955
关于积分的说明 13659345
捐赠科研通 4244900
什么是DOI,文献DOI怎么找? 2328993
邀请新用户注册赠送积分活动 1326790
关于科研通互助平台的介绍 1279012