A Review of Drug-related Associations Prediction Based on Artificial Intelligence Methods

人工智能 机器学习 计算机科学 相似性(几何) 药物发现 药品 药物靶点 药物开发 数据科学 生物信息学 医学 生物 药理学 图像(数学) 精神科
作者
Mei Ma,Xiujuan Lei,Yuchen Zhang
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:19 (6): 530-550
标识
DOI:10.2174/1574893618666230707123817
摘要

Background: Predicting drug-related associations is an important task in drug development and discovery. With the rapid advancement of high-throughput technologies and various biological and medical data, artificial intelligence (AI), especially progress in machine learning (ML) and deep learning (DL), has paved a new way for the development of drug-related associations prediction. Many studies have been conducted in the literature to predict drug-related associations. This study looks at various computational methods used for drug-related associations prediction with the hope of getting a better insight into the computational methods used. Methods: The various computational methods involved in drug-related associations prediction have been reviewed in this work. We have first summarized the drug, target, and disease-related mainstream public datasets. Then, we have discussed existing drug similarity, target similarity, and integrated similarity measurement approaches and grouped them according to their suitability. We have then comprehensively investigated drug-related associations and introduced relevant computational methods. Finally, we have briefly discussed the challenges involved in predicting drug-related associations. Result: We discovered that quite a few studies have used implemented ML and DL approaches for drug-related associations prediction. The key challenges were well noted in constructing datasets with reasonable negative samples, extracting rich features, and developing powerful prediction models or ensemble strategies. Conclusion: This review presents useful knowledge and future challenges on the subject matter with the hope of promoting further studies on predicting drug-related associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助Calvin采纳,获得10
刚刚
lili发布了新的文献求助10
刚刚
Owen应助kehan采纳,获得10
刚刚
刚刚
1秒前
大卜完成签到,获得积分10
2秒前
2秒前
yhy完成签到,获得积分10
2秒前
称心夏兰发布了新的文献求助10
2秒前
3秒前
搜集达人应助科研小叶采纳,获得10
3秒前
4秒前
4秒前
本凡发布了新的文献求助10
4秒前
Kismet发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
玉米侠完成签到,获得积分10
5秒前
西西发布了新的文献求助10
5秒前
机灵君浩发布了新的文献求助10
6秒前
Hoshi发布了新的文献求助10
6秒前
7秒前
ChenChen发布了新的文献求助10
7秒前
8秒前
CipherSage应助简单的呆呆采纳,获得10
8秒前
8秒前
六金发布了新的文献求助10
8秒前
如意远侵完成签到 ,获得积分10
8秒前
10秒前
Hello应助再睡一夏采纳,获得10
10秒前
hd发布了新的文献求助10
11秒前
机灵君浩完成签到,获得积分10
11秒前
称心夏兰完成签到,获得积分20
13秒前
nnnnn完成签到 ,获得积分10
13秒前
酷波er应助ChenChen采纳,获得10
14秒前
善良梦竹发布了新的文献求助10
14秒前
英姑应助害羞向日葵采纳,获得10
14秒前
清新的寄翠完成签到,获得积分10
14秒前
LXG666完成签到,获得积分10
15秒前
16秒前
消消消消气完成签到 ,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951219
求助须知:如何正确求助?哪些是违规求助? 3496615
关于积分的说明 11083276
捐赠科研通 3227034
什么是DOI,文献DOI怎么找? 1784184
邀请新用户注册赠送积分活动 868252
科研通“疑难数据库(出版商)”最低求助积分说明 801091