A Review of Drug-related Associations Prediction Based on Artificial Intelligence Methods

人工智能 机器学习 计算机科学 相似性(几何) 药物发现 药品 药物靶点 药物开发 数据科学 生物信息学 医学 生物 药理学 图像(数学) 精神科
作者
Mei Ma,Xiujuan Lei,Yuchen Zhang
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:19 (6): 530-550
标识
DOI:10.2174/1574893618666230707123817
摘要

Background: Predicting drug-related associations is an important task in drug development and discovery. With the rapid advancement of high-throughput technologies and various biological and medical data, artificial intelligence (AI), especially progress in machine learning (ML) and deep learning (DL), has paved a new way for the development of drug-related associations prediction. Many studies have been conducted in the literature to predict drug-related associations. This study looks at various computational methods used for drug-related associations prediction with the hope of getting a better insight into the computational methods used. Methods: The various computational methods involved in drug-related associations prediction have been reviewed in this work. We have first summarized the drug, target, and disease-related mainstream public datasets. Then, we have discussed existing drug similarity, target similarity, and integrated similarity measurement approaches and grouped them according to their suitability. We have then comprehensively investigated drug-related associations and introduced relevant computational methods. Finally, we have briefly discussed the challenges involved in predicting drug-related associations. Result: We discovered that quite a few studies have used implemented ML and DL approaches for drug-related associations prediction. The key challenges were well noted in constructing datasets with reasonable negative samples, extracting rich features, and developing powerful prediction models or ensemble strategies. Conclusion: This review presents useful knowledge and future challenges on the subject matter with the hope of promoting further studies on predicting drug-related associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皖医梁朝伟完成签到 ,获得积分0
刚刚
王羊补牢完成签到,获得积分10
刚刚
幽壑之潜蛟应助1111采纳,获得10
1秒前
野原新发布了新的文献求助10
1秒前
小二郎应助janet采纳,获得10
2秒前
蔓蔓要努力完成签到,获得积分10
2秒前
Kkkkk发布了新的文献求助10
2秒前
唠叨的以柳完成签到,获得积分10
2秒前
nlidexiaoyang发布了新的文献求助10
3秒前
orixero应助能干彤采纳,获得10
3秒前
科研通AI6.1应助粥粥采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
lavender发布了新的文献求助30
4秒前
luo发布了新的文献求助10
4秒前
桐桐应助白桦林采纳,获得10
4秒前
4秒前
烟花应助略略略采纳,获得10
5秒前
义气的身影完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
kirito1211发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
碧蓝青梦发布了新的文献求助10
6秒前
6秒前
HY发布了新的文献求助10
6秒前
zjw完成签到 ,获得积分10
7秒前
qqq完成签到,获得积分10
7秒前
7秒前
d.zhang完成签到,获得积分0
8秒前
SimpleKwee完成签到,获得积分10
8秒前
lee1984612完成签到,获得积分10
8秒前
DXX完成签到,获得积分10
8秒前
科研通AI6.1应助11采纳,获得10
8秒前
zrz521发布了新的文献求助20
8秒前
希望天下0贩的0应助lx123采纳,获得10
9秒前
9秒前
健忘芹发布了新的文献求助10
9秒前
123完成签到 ,获得积分20
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759534
求助须知:如何正确求助?哪些是违规求助? 5520722
关于积分的说明 15394460
捐赠科研通 4896615
什么是DOI,文献DOI怎么找? 2633799
邀请新用户注册赠送积分活动 1581879
关于科研通互助平台的介绍 1537300