A Review of Drug-related Associations Prediction Based on Artificial Intelligence Methods

人工智能 机器学习 计算机科学 相似性(几何) 药物发现 药品 药物靶点 药物开发 数据科学 生物信息学 医学 生物 药理学 图像(数学) 精神科
作者
Mei Ma,Xiujuan Lei,Yuchen Zhang
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:19 (6): 530-550
标识
DOI:10.2174/1574893618666230707123817
摘要

Background: Predicting drug-related associations is an important task in drug development and discovery. With the rapid advancement of high-throughput technologies and various biological and medical data, artificial intelligence (AI), especially progress in machine learning (ML) and deep learning (DL), has paved a new way for the development of drug-related associations prediction. Many studies have been conducted in the literature to predict drug-related associations. This study looks at various computational methods used for drug-related associations prediction with the hope of getting a better insight into the computational methods used. Methods: The various computational methods involved in drug-related associations prediction have been reviewed in this work. We have first summarized the drug, target, and disease-related mainstream public datasets. Then, we have discussed existing drug similarity, target similarity, and integrated similarity measurement approaches and grouped them according to their suitability. We have then comprehensively investigated drug-related associations and introduced relevant computational methods. Finally, we have briefly discussed the challenges involved in predicting drug-related associations. Result: We discovered that quite a few studies have used implemented ML and DL approaches for drug-related associations prediction. The key challenges were well noted in constructing datasets with reasonable negative samples, extracting rich features, and developing powerful prediction models or ensemble strategies. Conclusion: This review presents useful knowledge and future challenges on the subject matter with the hope of promoting further studies on predicting drug-related associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杳鸢应助su采纳,获得30
1秒前
good发布了新的文献求助10
1秒前
chenxin7271完成签到,获得积分10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
yizhiGao应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
马蹄应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
1秒前
研友_LX66qZ完成签到,获得积分10
1秒前
传奇3应助科研通管家采纳,获得30
2秒前
Akim应助火星上的听云采纳,获得10
2秒前
唐博凡应助科研通管家采纳,获得10
2秒前
西柚完成签到,获得积分10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
Orange应助科研通管家采纳,获得10
2秒前
kingwill应助科研通管家采纳,获得20
2秒前
SciGPT应助洛鸢采纳,获得10
2秒前
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
soso应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
yizhiGao应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
星威应助科研通管家采纳,获得20
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
3秒前
天天快乐应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
4秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762