A Review of Drug-related Associations Prediction Based on Artificial Intelligence Methods

人工智能 机器学习 计算机科学 相似性(几何) 药物发现 药品 药物靶点 药物开发 数据科学 生物信息学 医学 生物 药理学 图像(数学) 精神科
作者
Mei Ma,Xiujuan Lei,Yuchen Zhang
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:19 (6): 530-550
标识
DOI:10.2174/1574893618666230707123817
摘要

Background: Predicting drug-related associations is an important task in drug development and discovery. With the rapid advancement of high-throughput technologies and various biological and medical data, artificial intelligence (AI), especially progress in machine learning (ML) and deep learning (DL), has paved a new way for the development of drug-related associations prediction. Many studies have been conducted in the literature to predict drug-related associations. This study looks at various computational methods used for drug-related associations prediction with the hope of getting a better insight into the computational methods used. Methods: The various computational methods involved in drug-related associations prediction have been reviewed in this work. We have first summarized the drug, target, and disease-related mainstream public datasets. Then, we have discussed existing drug similarity, target similarity, and integrated similarity measurement approaches and grouped them according to their suitability. We have then comprehensively investigated drug-related associations and introduced relevant computational methods. Finally, we have briefly discussed the challenges involved in predicting drug-related associations. Result: We discovered that quite a few studies have used implemented ML and DL approaches for drug-related associations prediction. The key challenges were well noted in constructing datasets with reasonable negative samples, extracting rich features, and developing powerful prediction models or ensemble strategies. Conclusion: This review presents useful knowledge and future challenges on the subject matter with the hope of promoting further studies on predicting drug-related associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助余健采纳,获得10
刚刚
善学以致用应助自然紫山采纳,获得30
刚刚
1秒前
小老板完成签到,获得积分10
1秒前
LOKe2L发布了新的文献求助30
1秒前
思源应助暴躁的振家采纳,获得10
2秒前
2秒前
2秒前
爆米花应助污猫采纳,获得10
3秒前
Z_BOY完成签到 ,获得积分10
4秒前
小蘑菇应助紫心采纳,获得10
4秒前
4秒前
英勇的新瑶完成签到,获得积分10
5秒前
wendy发布了新的文献求助10
5秒前
6秒前
所所应助笨笨雨兰采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
7秒前
华仔应助你好采纳,获得10
7秒前
科目三应助你好采纳,获得10
7秒前
Orange应助你好采纳,获得10
7秒前
哈基米完成签到,获得积分0
7秒前
CipherSage应助王月采纳,获得10
8秒前
华仔应助徐hhh采纳,获得10
9秒前
小凤完成签到 ,获得积分10
9秒前
不吃香菜发布了新的文献求助20
9秒前
lameliu完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
JamesPei应助ma121采纳,获得30
11秒前
orixero应助小马同学采纳,获得10
11秒前
11秒前
哈基米发布了新的文献求助50
11秒前
科研通AI2S应助ms采纳,获得10
12秒前
12秒前
无极微光应助jananie采纳,获得20
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5768867
求助须知:如何正确求助?哪些是违规求助? 5577225
关于积分的说明 15419796
捐赠科研通 4902658
什么是DOI,文献DOI怎么找? 2637844
邀请新用户注册赠送积分活动 1585759
关于科研通互助平台的介绍 1540922