亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Review of Drug-related Associations Prediction Based on Artificial Intelligence Methods

人工智能 机器学习 计算机科学 相似性(几何) 药物发现 药品 药物靶点 药物开发 数据科学 生物信息学 医学 生物 药理学 图像(数学) 精神科
作者
Mei Ma,Xiujuan Lei,Yuchen Zhang
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:19 (6): 530-550
标识
DOI:10.2174/1574893618666230707123817
摘要

Background: Predicting drug-related associations is an important task in drug development and discovery. With the rapid advancement of high-throughput technologies and various biological and medical data, artificial intelligence (AI), especially progress in machine learning (ML) and deep learning (DL), has paved a new way for the development of drug-related associations prediction. Many studies have been conducted in the literature to predict drug-related associations. This study looks at various computational methods used for drug-related associations prediction with the hope of getting a better insight into the computational methods used. Methods: The various computational methods involved in drug-related associations prediction have been reviewed in this work. We have first summarized the drug, target, and disease-related mainstream public datasets. Then, we have discussed existing drug similarity, target similarity, and integrated similarity measurement approaches and grouped them according to their suitability. We have then comprehensively investigated drug-related associations and introduced relevant computational methods. Finally, we have briefly discussed the challenges involved in predicting drug-related associations. Result: We discovered that quite a few studies have used implemented ML and DL approaches for drug-related associations prediction. The key challenges were well noted in constructing datasets with reasonable negative samples, extracting rich features, and developing powerful prediction models or ensemble strategies. Conclusion: This review presents useful knowledge and future challenges on the subject matter with the hope of promoting further studies on predicting drug-related associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yueying完成签到,获得积分10
6秒前
10秒前
Abl完成签到 ,获得积分10
11秒前
情怀应助陌陌采纳,获得10
15秒前
17秒前
25秒前
OYJH完成签到,获得积分10
27秒前
aujsdhab发布了新的文献求助10
27秒前
aujsdhab完成签到,获得积分10
37秒前
57秒前
1分钟前
annazhang完成签到 ,获得积分10
1分钟前
斯文败类应助科研通管家采纳,获得10
1分钟前
纯真如松完成签到,获得积分10
1分钟前
aaa5a123完成签到 ,获得积分10
1分钟前
nuo发布了新的文献求助10
1分钟前
1分钟前
白白白发布了新的文献求助10
2分钟前
2分钟前
李爱国应助昏睡的向真采纳,获得30
2分钟前
nuo完成签到,获得积分20
2分钟前
白白白完成签到,获得积分10
2分钟前
2分钟前
2分钟前
Caleb完成签到,获得积分10
2分钟前
2分钟前
852应助当晚星散落采纳,获得10
2分钟前
2分钟前
2分钟前
Laoxing258发布了新的文献求助10
2分钟前
2分钟前
小二郎应助石榴汁的书采纳,获得10
2分钟前
发篇Sci不过分吧完成签到,获得积分10
2分钟前
酷酷海豚完成签到,获得积分10
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755072
求助须知:如何正确求助?哪些是违规求助? 5491124
关于积分的说明 15380800
捐赠科研通 4893386
什么是DOI,文献DOI怎么找? 2631982
邀请新用户注册赠送积分活动 1579839
关于科研通互助平台的介绍 1535675