亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Review of Drug-related Associations Prediction Based on Artificial Intelligence Methods

人工智能 机器学习 计算机科学 相似性(几何) 药物发现 药品 药物靶点 药物开发 数据科学 生物信息学 医学 生物 药理学 图像(数学) 精神科
作者
Mei Ma,Xiujuan Lei,Yuchen Zhang
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:19 (6): 530-550
标识
DOI:10.2174/1574893618666230707123817
摘要

Background: Predicting drug-related associations is an important task in drug development and discovery. With the rapid advancement of high-throughput technologies and various biological and medical data, artificial intelligence (AI), especially progress in machine learning (ML) and deep learning (DL), has paved a new way for the development of drug-related associations prediction. Many studies have been conducted in the literature to predict drug-related associations. This study looks at various computational methods used for drug-related associations prediction with the hope of getting a better insight into the computational methods used. Methods: The various computational methods involved in drug-related associations prediction have been reviewed in this work. We have first summarized the drug, target, and disease-related mainstream public datasets. Then, we have discussed existing drug similarity, target similarity, and integrated similarity measurement approaches and grouped them according to their suitability. We have then comprehensively investigated drug-related associations and introduced relevant computational methods. Finally, we have briefly discussed the challenges involved in predicting drug-related associations. Result: We discovered that quite a few studies have used implemented ML and DL approaches for drug-related associations prediction. The key challenges were well noted in constructing datasets with reasonable negative samples, extracting rich features, and developing powerful prediction models or ensemble strategies. Conclusion: This review presents useful knowledge and future challenges on the subject matter with the hope of promoting further studies on predicting drug-related associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
斯文败类应助Lebpom采纳,获得10
9秒前
慕青应助LucyMartinez采纳,获得10
12秒前
111完成签到 ,获得积分10
14秒前
正直的爆米花完成签到 ,获得积分10
14秒前
18秒前
jinmuna发布了新的文献求助10
20秒前
21秒前
李甄好应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
含糊的尔槐完成签到,获得积分10
26秒前
31秒前
34秒前
LucyMartinez发布了新的文献求助10
36秒前
36秒前
研友_VZG7GZ应助雪碧要加冰采纳,获得10
37秒前
45秒前
科研通AI6.1应助maopf采纳,获得10
46秒前
雪碧要加冰完成签到,获得积分10
49秒前
54秒前
Abdurrahman完成签到,获得积分10
57秒前
yihuji发布了新的文献求助10
57秒前
BowieHuang应助Sivledy采纳,获得10
1分钟前
1分钟前
1分钟前
小林完成签到 ,获得积分10
1分钟前
奋斗的小研完成签到,获得积分10
1分钟前
BowieHuang应助Sivledy采纳,获得10
1分钟前
科研通AI2S应助Sivledy采纳,获得10
1分钟前
freebird完成签到,获得积分10
1分钟前
1分钟前
caca完成签到,获得积分0
1分钟前
luming完成签到 ,获得积分10
1分钟前
Rory完成签到 ,获得积分10
1分钟前
空咻咻发布了新的文献求助10
1分钟前
飘逸芷珍应助小年小少采纳,获得10
1分钟前
盛事不朽完成签到 ,获得积分10
1分钟前
1分钟前
深情安青应助Karol采纳,获得10
1分钟前
yihuji完成签到 ,获得积分10
1分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746562
求助须知:如何正确求助?哪些是违规求助? 5436195
关于积分的说明 15355651
捐赠科研通 4886597
什么是DOI,文献DOI怎么找? 2627322
邀请新用户注册赠送积分活动 1575805
关于科研通互助平台的介绍 1532538