已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Review of Drug-related Associations Prediction Based on Artificial Intelligence Methods

人工智能 机器学习 计算机科学 相似性(几何) 药物发现 药品 药物靶点 药物开发 数据科学 生物信息学 医学 生物 药理学 图像(数学) 精神科
作者
Mei Ma,Xiujuan Lei,Yuchen Zhang
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:19 (6): 530-550
标识
DOI:10.2174/1574893618666230707123817
摘要

Background: Predicting drug-related associations is an important task in drug development and discovery. With the rapid advancement of high-throughput technologies and various biological and medical data, artificial intelligence (AI), especially progress in machine learning (ML) and deep learning (DL), has paved a new way for the development of drug-related associations prediction. Many studies have been conducted in the literature to predict drug-related associations. This study looks at various computational methods used for drug-related associations prediction with the hope of getting a better insight into the computational methods used. Methods: The various computational methods involved in drug-related associations prediction have been reviewed in this work. We have first summarized the drug, target, and disease-related mainstream public datasets. Then, we have discussed existing drug similarity, target similarity, and integrated similarity measurement approaches and grouped them according to their suitability. We have then comprehensively investigated drug-related associations and introduced relevant computational methods. Finally, we have briefly discussed the challenges involved in predicting drug-related associations. Result: We discovered that quite a few studies have used implemented ML and DL approaches for drug-related associations prediction. The key challenges were well noted in constructing datasets with reasonable negative samples, extracting rich features, and developing powerful prediction models or ensemble strategies. Conclusion: This review presents useful knowledge and future challenges on the subject matter with the hope of promoting further studies on predicting drug-related associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
体贴花卷完成签到,获得积分10
刚刚
深情安青应助佛光辉采纳,获得10
1秒前
2秒前
LuckyM完成签到 ,获得积分10
2秒前
meow完成签到 ,获得积分10
6秒前
科研通AI6应助张志超采纳,获得10
6秒前
tong发布了新的文献求助10
8秒前
科研通AI6应助白泽采纳,获得10
8秒前
坚强的蔷薇薇完成签到 ,获得积分10
9秒前
温柔的水卉完成签到,获得积分10
13秒前
yyds应助茜茜采纳,获得50
14秒前
安静店员完成签到,获得积分10
14秒前
doctor2023应助张志超采纳,获得10
15秒前
Jasper应助tong采纳,获得10
20秒前
田様应助佛光辉采纳,获得50
23秒前
愤怒的苗条完成签到 ,获得积分10
26秒前
年少丶完成签到,获得积分10
27秒前
邓娅琴完成签到 ,获得积分10
27秒前
XDSH完成签到 ,获得积分10
32秒前
搜集达人应助佛光辉采纳,获得10
38秒前
成就的笑南完成签到 ,获得积分10
40秒前
池雨完成签到 ,获得积分10
41秒前
45秒前
TN发布了新的文献求助10
51秒前
鲜艳的靖雁完成签到,获得积分10
52秒前
所所应助liiike采纳,获得10
52秒前
53秒前
58秒前
wuhanfei完成签到,获得积分10
1分钟前
1分钟前
多情的忆之完成签到,获得积分10
1分钟前
CATH完成签到 ,获得积分10
1分钟前
1分钟前
卷卷卷儿完成签到 ,获得积分10
1分钟前
zjz发布了新的文献求助10
1分钟前
科研通AI2S应助佛光辉采纳,获得10
1分钟前
廷聿完成签到,获得积分10
1分钟前
1分钟前
善学以致用应助讲真的采纳,获得10
1分钟前
干净思远完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627761
求助须知:如何正确求助?哪些是违规求助? 4714630
关于积分的说明 14963076
捐赠科研通 4785511
什么是DOI,文献DOI怎么找? 2555141
邀请新用户注册赠送积分活动 1516488
关于科研通互助平台的介绍 1476910