亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Review of Drug-related Associations Prediction Based on Artificial Intelligence Methods

人工智能 机器学习 计算机科学 相似性(几何) 药物发现 药品 药物靶点 药物开发 数据科学 生物信息学 医学 生物 药理学 图像(数学) 精神科
作者
Mei Ma,Xiujuan Lei,Yuchen Zhang
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:19 (6): 530-550
标识
DOI:10.2174/1574893618666230707123817
摘要

Background: Predicting drug-related associations is an important task in drug development and discovery. With the rapid advancement of high-throughput technologies and various biological and medical data, artificial intelligence (AI), especially progress in machine learning (ML) and deep learning (DL), has paved a new way for the development of drug-related associations prediction. Many studies have been conducted in the literature to predict drug-related associations. This study looks at various computational methods used for drug-related associations prediction with the hope of getting a better insight into the computational methods used. Methods: The various computational methods involved in drug-related associations prediction have been reviewed in this work. We have first summarized the drug, target, and disease-related mainstream public datasets. Then, we have discussed existing drug similarity, target similarity, and integrated similarity measurement approaches and grouped them according to their suitability. We have then comprehensively investigated drug-related associations and introduced relevant computational methods. Finally, we have briefly discussed the challenges involved in predicting drug-related associations. Result: We discovered that quite a few studies have used implemented ML and DL approaches for drug-related associations prediction. The key challenges were well noted in constructing datasets with reasonable negative samples, extracting rich features, and developing powerful prediction models or ensemble strategies. Conclusion: This review presents useful knowledge and future challenges on the subject matter with the hope of promoting further studies on predicting drug-related associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助why采纳,获得10
4秒前
浮游应助Wei采纳,获得10
44秒前
zz完成签到 ,获得积分10
45秒前
1分钟前
lxfthu发布了新的文献求助10
1分钟前
why发布了新的文献求助10
2分钟前
Geist完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
冷傲迎梅完成签到 ,获得积分10
2分钟前
hzc关闭了hzc文献求助
2分钟前
why完成签到,获得积分10
3分钟前
DChen完成签到,获得积分10
3分钟前
hzc发布了新的文献求助10
3分钟前
踏实的无敌完成签到,获得积分10
3分钟前
甜瓜123完成签到,获得积分10
3分钟前
南极的企鹅365完成签到 ,获得积分10
4分钟前
小宋同学不能怂完成签到 ,获得积分10
4分钟前
hzc发布了新的文献求助10
4分钟前
小燕子完成签到 ,获得积分10
4分钟前
上官若男应助hzc采纳,获得10
4分钟前
科研通AI6应助尊敬的芷卉采纳,获得10
5分钟前
科研通AI6应助尊敬的芷卉采纳,获得20
5分钟前
5分钟前
情怀应助尊敬的芷卉采纳,获得10
5分钟前
5分钟前
英姑应助尊敬的芷卉采纳,获得20
5分钟前
5分钟前
情怀应助尊敬的芷卉采纳,获得10
5分钟前
华仔应助尊敬的芷卉采纳,获得20
5分钟前
上官若男应助尊敬的芷卉采纳,获得20
5分钟前
浮游应助VDC采纳,获得10
6分钟前
6分钟前
高级牛马完成签到 ,获得积分10
7分钟前
于yu完成签到 ,获得积分10
7分钟前
LIN完成签到,获得积分10
8分钟前
8分钟前
8分钟前
lxfthu发布了新的文献求助10
8分钟前
汪汪淬冰冰完成签到,获得积分10
8分钟前
范白容完成签到 ,获得积分0
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5470310
求助须知:如何正确求助?哪些是违规求助? 4573151
关于积分的说明 14338158
捐赠科研通 4500182
什么是DOI,文献DOI怎么找? 2465615
邀请新用户注册赠送积分活动 1453965
关于科研通互助平台的介绍 1428602