A Review of Drug-related Associations Prediction Based on Artificial Intelligence Methods

人工智能 机器学习 计算机科学 相似性(几何) 药物发现 药品 药物靶点 药物开发 数据科学 生物信息学 医学 生物 药理学 图像(数学) 精神科
作者
Mei Ma,Xiujuan Lei,Yuchen Zhang
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:19 (6): 530-550
标识
DOI:10.2174/1574893618666230707123817
摘要

Background: Predicting drug-related associations is an important task in drug development and discovery. With the rapid advancement of high-throughput technologies and various biological and medical data, artificial intelligence (AI), especially progress in machine learning (ML) and deep learning (DL), has paved a new way for the development of drug-related associations prediction. Many studies have been conducted in the literature to predict drug-related associations. This study looks at various computational methods used for drug-related associations prediction with the hope of getting a better insight into the computational methods used. Methods: The various computational methods involved in drug-related associations prediction have been reviewed in this work. We have first summarized the drug, target, and disease-related mainstream public datasets. Then, we have discussed existing drug similarity, target similarity, and integrated similarity measurement approaches and grouped them according to their suitability. We have then comprehensively investigated drug-related associations and introduced relevant computational methods. Finally, we have briefly discussed the challenges involved in predicting drug-related associations. Result: We discovered that quite a few studies have used implemented ML and DL approaches for drug-related associations prediction. The key challenges were well noted in constructing datasets with reasonable negative samples, extracting rich features, and developing powerful prediction models or ensemble strategies. Conclusion: This review presents useful knowledge and future challenges on the subject matter with the hope of promoting further studies on predicting drug-related associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大能猫完成签到,获得积分10
刚刚
刚刚
刚刚
da完成签到,获得积分10
1秒前
randylch完成签到,获得积分10
1秒前
2秒前
vera完成签到,获得积分10
2秒前
gumiho1007完成签到 ,获得积分10
2秒前
黎芽儿完成签到,获得积分10
2秒前
李文思完成签到,获得积分10
2秒前
可爱以松完成签到,获得积分10
3秒前
3秒前
HXH完成签到,获得积分10
4秒前
cassandra发布了新的文献求助30
4秒前
ASUKA完成签到,获得积分10
4秒前
云朗完成签到,获得积分10
5秒前
6秒前
小菜鸡完成签到 ,获得积分10
6秒前
WQ完成签到 ,获得积分10
6秒前
慕灵薇发布了新的文献求助10
6秒前
娜娜发布了新的文献求助10
7秒前
丸子完成签到 ,获得积分10
7秒前
lxshu0722完成签到,获得积分10
8秒前
沉默的樱发布了新的文献求助30
8秒前
GX2023发布了新的文献求助10
8秒前
机智的思远完成签到 ,获得积分10
9秒前
小树叶完成签到 ,获得积分10
9秒前
9秒前
铝合金男孩完成签到,获得积分10
10秒前
Akim应助laws采纳,获得30
11秒前
马里奥完成签到,获得积分10
11秒前
要开心完成签到,获得积分10
13秒前
shen完成签到,获得积分10
13秒前
Yoo.发布了新的文献求助10
13秒前
13秒前
齐桓公完成签到,获得积分10
13秒前
Ice_zhao完成签到,获得积分10
13秒前
14秒前
不必要再讨论适合与否完成签到,获得积分10
14秒前
忙碌的数学人完成签到,获得积分10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294777
求助须知:如何正确求助?哪些是违规求助? 2930694
关于积分的说明 8447031
捐赠科研通 2602981
什么是DOI,文献DOI怎么找? 1420818
科研通“疑难数据库(出版商)”最低求助积分说明 660682
邀请新用户注册赠送积分活动 643500