亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adaptive Safe Reinforcement Learning With Full-State Constraints and Constrained Adaptation for Autonomous Vehicles

强化学习 计算机科学 钢筋 国家(计算机科学) 适应(眼睛) 错误驱动学习 人工智能 心理学 神经科学 社会心理学 算法
作者
Yuxiang Zhang,Xiaoling Liang,Dongyu Li,Shuzhi Sam Ge,Bingzhao Gao,Hong Chen,Tong Heng Lee
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (3): 1907-1920 被引量:10
标识
DOI:10.1109/tcyb.2023.3283771
摘要

High-performance learning-based control for the typical safety-critical autonomous vehicles invariably requires that the full-state variables are constrained within the safety region even during the learning process. To solve this technically critical and challenging problem, this work proposes an adaptive safe reinforcement learning (RL) algorithm that invokes innovative safety-related RL methods with the consideration of constraining the full-state variables within the safety region with adaptation. These are developed toward assuring the attainment of the specified requirements on the full-state variables with two notable aspects. First, thus, an appropriately optimized backstepping technique and the asymmetric barrier Lyapunov function (BLF) methodology are used to establish the safe learning framework to ensure system full-state constraints requirements. More specifically, each subsystem's control and partial derivative of the value function are decomposed with asymmetric BLF-related items and an independent learning part. Then, the independent learning part is updated to solve the Hamilton–Jacobi–Bellman equation through an adaptive learning implementation to attain the desired performance in system control. Second, with further Lyapunov-based analysis, it is demonstrated that safety performance is effectively doubly assured via a methodology of a constrained adaptation algorithm during optimization (which incorporates the projection operator and can deal with the conflict between safety and optimization). Therefore, this algorithm optimizes system control and ensures that the full set of state variables involved is always constrained within the safety region during the whole learning process. Comparison simulations and ablation studies are carried out on motion control problems for autonomous vehicles, which have verified superior performance with smaller variance and better convergence performance under uncertain circumstances. The effectiveness of the safe performance of overall system control with the proposed method accordingly has been verified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曾先生发布了新的文献求助10
刚刚
8秒前
曾先生完成签到,获得积分10
9秒前
zhuzhu007完成签到 ,获得积分10
18秒前
阿信发布了新的文献求助10
20秒前
31秒前
酷波er应助planA采纳,获得10
38秒前
shinyuliu完成签到,获得积分10
41秒前
tuanheqi应助outman采纳,获得20
42秒前
43秒前
44秒前
1分钟前
1分钟前
牛牛完成签到,获得积分10
1分钟前
Gilbert发布了新的文献求助10
1分钟前
hongxuezhi完成签到,获得积分10
1分钟前
852应助科研通管家采纳,获得10
1分钟前
planA发布了新的文献求助10
1分钟前
星辰大海应助牛牛采纳,获得10
1分钟前
Gilbert完成签到,获得积分20
1分钟前
planA完成签到,获得积分10
1分钟前
眼睛大寒松完成签到,获得积分10
1分钟前
1分钟前
牛牛发布了新的文献求助10
1分钟前
1分钟前
wuhaixia完成签到,获得积分10
1分钟前
1分钟前
牛牛发布了新的文献求助10
1分钟前
1分钟前
Odile完成签到 ,获得积分10
1分钟前
雷家完成签到,获得积分10
1分钟前
1分钟前
lmc发布了新的文献求助10
1分钟前
牛牛发布了新的文献求助10
1分钟前
1分钟前
songyongjian完成签到,获得积分10
1分钟前
2分钟前
2分钟前
moomomomomo完成签到,获得积分10
2分钟前
2分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248733
求助须知:如何正确求助?哪些是违规求助? 2892165
关于积分的说明 8270092
捐赠科研通 2560260
什么是DOI,文献DOI怎么找? 1388970
科研通“疑难数据库(出版商)”最低求助积分说明 650927
邀请新用户注册赠送积分活动 627823