Reaction mechanism study and modeling of thermal runaway inside a high nickel-based lithium-ion battery through component combination analysis

热失控 锂离子电池 阳极 分离器(采油) 电池(电) 阴极 化学 电解质 分析化学(期刊) 锂(药物) 材料科学 热力学 电极 物理化学 物理 功率(物理) 内分泌学 医学 色谱法
作者
Minuk Kim,Jaeyoung Jeon,Jongsup Hong
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:471: 144434-144434 被引量:33
标识
DOI:10.1016/j.cej.2023.144434
摘要

To diagnose and elucidate thermal runaway accompanying gas evolution of a lithium-ion battery, it is essential to understand the thermal side reactions that lead to thermal runaway inside a lithium-ion battery. It is very useful to make a reliable model that represents these reactions to analyze thermal runaway processes in order to secure battery safety and overcome high costs of large-scale experiments. This study proposes the reaction mechanism and the reaction model through the design of experiments with the combination of battery components such as a cathode, an anode, an electrolyte, and a separator. To develop the reaction mechanism, the peak temperature and calorific value of each reaction are obtained by using a differential scanning calorimeter. The change of mass and produced gas from each reaction are identified by using an online thermogravimetry-mass spectrometer. Based on these measurements, the reaction model is developed by estimating kinetic parameters obtained from the Kissinger analysis. The reaction model exhibits root-mean-square-error of 1.91 mW, 21.79 mW, and 4.53 mW in the electrolyte, the cathode and the anode, respectively, as compared to differential scanning calorimeter results, confirming its high fidelity. The proposed model illustrates the variation of volume fractions of each phase inside a lithium-ion battery to simulate electrochemical performance degradation during thermal runaway stage. The change in internal pressure is also evaluated by using the change in mass and volume of each phase. Based on the mechanism and model derived from this study, it is possible to pinpoint the electrochemical performance degradation and heat generation characteristics during thermal runaway.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
HANXIA完成签到,获得积分10
刚刚
刚刚
1秒前
研友_nxy9XZ完成签到,获得积分10
2秒前
2秒前
2秒前
cyz完成签到,获得积分10
3秒前
ChenChen发布了新的文献求助10
5秒前
苏小安发布了新的文献求助10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
cyz发布了新的文献求助20
6秒前
旺旺饼干发布了新的文献求助10
7秒前
kyouu发布了新的文献求助10
7秒前
8秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
张国强发布了新的文献求助10
11秒前
贪玩板栗发布了新的文献求助10
11秒前
小冰完成签到,获得积分10
11秒前
11秒前
依兰飞舞完成签到,获得积分10
12秒前
整齐乌发布了新的文献求助10
12秒前
23关闭了23文献求助
12秒前
13秒前
桐桐应助MET1采纳,获得10
14秒前
14秒前
dq1992发布了新的文献求助10
15秒前
zyw发布了新的文献求助10
15秒前
15秒前
15秒前
钱大大发布了新的文献求助10
15秒前
ACMI发布了新的文献求助30
16秒前
烟花应助旺旺饼干采纳,获得10
16秒前
无心的小霸王完成签到 ,获得积分10
16秒前
17秒前
哈哈不哈哈完成签到 ,获得积分10
17秒前
hzk完成签到,获得积分10
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5752140
求助须知:如何正确求助?哪些是违规求助? 5472900
关于积分的说明 15373131
捐赠科研通 4891251
什么是DOI,文献DOI怎么找? 2630284
邀请新用户注册赠送积分活动 1578475
关于科研通互助平台的介绍 1534465