Diffusion tensor imaging (DTI) Analysis Based on Tract-based spatial statistics (TBSS) and Classification Using Multi-Metric in Alzheimer's Disease

部分各向异性 磁共振弥散成像 白质 胼胝体 支持向量机 人工智能 神经影像学 公制(单位) 上纵束 神经科学 心理学 模式识别(心理学) 计算机科学 物理 医学 磁共振成像 放射科 运营管理 经济
作者
Yingteng Zhang,Feibiao Zhan
出处
期刊:Journal of Integrative Neuroscience [Imperial College Press]
卷期号:22 (4) 被引量:3
标识
DOI:10.31083/j.jin2204101
摘要

Background: Alzheimer’s disease (AD) is a brain disorder characterized by atrophy of cerebral cortex and neurofibrillary tangles. Accurate identification of individuals at high risk of developing AD is key to early intervention. Combining neuroimaging markers derived from diffusion tensor images with machine learning techniques, unique anatomical patterns can be identified and further distinguished between AD and healthy control (HC). Methods: In this study, 37 AD patients (ADs) and 36 healthy controls (HCs) from the Alzheimer’s Disease Neuroimaging Initiative were applied to tract-based spatial statistics (TBSS) analysis and multi-metric classification research. Results: The TBSS results showed that the corona radiata, corpus callosum and superior longitudinal fasciculus were the white matter fiber tracts which mainly suffered the severe damage in ADs. Using support vector machine recursive feature elimination (SVM-RFE) method, the classification performance received a decent improvement. In addition, the integration of fractional anisotropy (FA) + mean diffusivity (MD) + radial diffusivity (RD) into multi-metric could effectively separate ADs from HCs. The rank of significance of diffusion metrics was FA > axial diffusivity (DA) > MD > RD in our research. Conclusions: Our findings suggested that the TBSS and machine learning method could play a guidance role on clinical diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
lie发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
卓天宇完成签到,获得积分10
4秒前
5秒前
自行设置完成签到,获得积分10
6秒前
邓邓完成签到,获得积分10
6秒前
Atopos完成签到,获得积分20
8秒前
8秒前
sxp1031完成签到,获得积分20
9秒前
爆米花应助若兰采纳,获得10
10秒前
10秒前
A_T_O_M_I_C发布了新的文献求助10
10秒前
zfr662发布了新的文献求助10
12秒前
13秒前
愉快初丹发布了新的文献求助10
14秒前
16秒前
17秒前
卢珈馨发布了新的文献求助10
18秒前
脑洞疼应助曈梦采纳,获得10
18秒前
隐形曼青应助欣欣子采纳,获得10
18秒前
哭泣的冰海完成签到,获得积分10
19秒前
火火完成签到,获得积分10
19秒前
20秒前
jiang发布了新的文献求助20
20秒前
20秒前
20秒前
斯文黄豆完成签到,获得积分20
21秒前
今后应助知更鸟采纳,获得10
21秒前
打打应助战国瞳采纳,获得10
22秒前
23秒前
24秒前
科研通AI5应助Yuanyuan采纳,获得10
24秒前
25秒前
25秒前
lili完成签到,获得积分10
25秒前
奋斗代桃发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4941338
求助须知:如何正确求助?哪些是违规求助? 4207362
关于积分的说明 13077414
捐赠科研通 3986186
什么是DOI,文献DOI怎么找? 2182512
邀请新用户注册赠送积分活动 1198073
关于科研通互助平台的介绍 1110368