已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Recent advances and application of machine learning in food flavor prediction and regulation

风味 机器学习 人工智能 电子鼻 支持向量机 计算机科学 质量(理念) 生化工程 食品科学 工程类 化学 哲学 认识论
作者
Huizhuo Ji,Dandan Pu,Wenjing Yan,Qingchuan Zhang,Min Zuo,Yuyu Zhang
出处
期刊:Trends in Food Science and Technology [Elsevier]
卷期号:138: 738-751 被引量:125
标识
DOI:10.1016/j.tifs.2023.07.012
摘要

Food flavor is a key factor affecting sensory quality. Predicting and regulating flavor can result in exceptional flavor characteristics and improve consumer preferences and food acceptability. Evaluating and regulating flavor through traditional experimental methods are time-consuming, labor-intensive, and cannot handle large amounts of data. Computational methods, such as machine learning (ML) techniques, can accurately and efficiently predict and regulate complex flavors and attract continuous attention. This review presents the principles and advantages of commonly used ML methods, including support vector machine, decision tree, random forest, k-nearest neighbors, extreme learning machine, artificial neural networks, and deep learning, as well as their recent applications and prospects in the prediction and regulation of food flavors. Notably, the prediction of food flavor based on molecular structures, physical and chemical properties, and data obtained from electronic nose, electronic tongue, and gas chromatography-mass spectrometry were summarized. The regulation of food flavor by ML through metabolites and genes has also been reviewed. Simultaneous combination of various ML methods could improve the prediction accuracy of flavor profiles, perception intensity, and sensory quality classification compared to a single model. Additionally, the data fusion of different techniques showed better flavor prediction performance than single data input. This review indicates that ML techniques are promising for predicting flavor formation mechanisms, dose effects of structure-flavor quality, and directing the bio/chemical synthesis of desirable flavor compounds to meet the consumer demand for healthy and delicious food.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哑巴和喇叭完成签到 ,获得积分10
刚刚
guohuameike完成签到,获得积分10
1秒前
2秒前
李龙琪完成签到,获得积分10
3秒前
李顺利完成签到 ,获得积分10
6秒前
HaonanZhang发布了新的文献求助10
8秒前
mashibeo应助科研通管家采纳,获得10
9秒前
ccm应助科研通管家采纳,获得10
9秒前
mashibeo应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
mashibeo应助科研通管家采纳,获得10
9秒前
pluto应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
mashibeo应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
pluto应助科研通管家采纳,获得10
10秒前
moiumuio完成签到,获得积分10
11秒前
aki关注了科研通微信公众号
11秒前
11秒前
aDou完成签到 ,获得积分10
11秒前
ccc发布了新的文献求助10
13秒前
15秒前
15秒前
15秒前
XinEr完成签到 ,获得积分10
17秒前
only完成签到 ,获得积分10
17秒前
马马发布了新的文献求助10
19秒前
23秒前
江枫渔火VC完成签到 ,获得积分10
23秒前
goodltl完成签到 ,获得积分10
25秒前
25秒前
26秒前
27秒前
27秒前
大模型应助钰L采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458682
求助须知:如何正确求助?哪些是违规求助? 4564690
关于积分的说明 14296618
捐赠科研通 4489782
什么是DOI,文献DOI怎么找? 2459274
邀请新用户注册赠送积分活动 1449020
关于科研通互助平台的介绍 1424502