Radial basis function-differential quadrature-based physics-informed neural network for steady incompressible flows

物理 正交(天文学) 离散化 基函数 高斯求积 应用数学 人工神经网络 搭配法 径向基函数 微分方程 算法 数学分析 常微分方程 尼氏法 计算机科学 边值问题 数学 人工智能 量子力学 光学
作者
Yang Xiao,Liming Yang,Yinjie Du,Yuxin Song,C. Shu
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:35 (7) 被引量:13
标识
DOI:10.1063/5.0159224
摘要

In this work, a radial basis function differential quadrature-based physics-informed neural network (RBFDQ-PINN) is proposed to simulate steady incompressible flows. The conventional physics-informed neural network (PINN) makes use of the physical equation as a constraint to ensure that the solution satisfies the physical law and the automatic differentiation (AD) method to calculate derivatives at collocation points. Although the AD-PINN is expedient in evaluating derivatives at arbitrary points, it is time-consuming with higher-order derivatives and may lead to nonphysical solutions with sparse samples. Alternatively, the finite difference (FD) method can facilitate the calculation of derivatives, but the FD-PINN will increase the computational cost when handling random point distributions, especially with higher-order discretization schemes. To address these issues, the radial basis function differential quadrature (RBFDQ) method is incorporated into the PINN to replace the AD method for the calculation of derivatives. The RBFDQ method equips with high efficiency in the calculation of high-order derivatives as compared with the AD method and great flexibility in the distribution of mesh points as compared with the FD method. As a result, the proposed RBFDQ-PINN is not only more efficient and accurate but also applicable to irregular geometries. To demonstrate its effectiveness, the RBFDQ-PINN is tested in sample problems such as the lid-driven cavity flow, the channel flow over a backward-facing step, and the flow around a circular cylinder. Numerical results reveal that the RBFDQ-PINN achieves satisfactory accuracy without any labeled collocation points, whereas the AD-PINN struggles to solve some cases, especially for high Reynolds number flows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开放初瑶发布了新的文献求助20
1秒前
浅眠发布了新的文献求助10
2秒前
sunjunshu发布了新的文献求助10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得30
2秒前
Ava应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
3秒前
3秒前
Carhao发布了新的文献求助30
3秒前
ZX发布了新的文献求助10
4秒前
4秒前
5秒前
Coisini发布了新的文献求助10
6秒前
7秒前
8秒前
Kamal发布了新的文献求助10
9秒前
晴天完成签到,获得积分20
9秒前
10秒前
蜡笔小韩完成签到,获得积分10
10秒前
浅眠完成签到,获得积分10
10秒前
语物发布了新的文献求助10
11秒前
Jenny发布了新的文献求助10
12秒前
12秒前
ZX完成签到,获得积分10
13秒前
殇春秋应助Guoqiang采纳,获得10
13秒前
Owen应助Guoqiang采纳,获得10
13秒前
蜡笔小韩发布了新的文献求助10
13秒前
15秒前
落寞的无施完成签到,获得积分20
15秒前
15秒前
Owen应助小庄同学采纳,获得10
15秒前
秦pale发布了新的文献求助30
16秒前
sun完成签到,获得积分10
17秒前
生动白开水完成签到,获得积分10
17秒前
liuke完成签到,获得积分10
17秒前
现代的雨竹完成签到,获得积分10
17秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123170
求助须知:如何正确求助?哪些是违规求助? 2773659
关于积分的说明 7718928
捐赠科研通 2429325
什么是DOI,文献DOI怎么找? 1290230
科研通“疑难数据库(出版商)”最低求助积分说明 621795
版权声明 600251