亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Contrastive deep support vector data description

超球体 特征(语言学) 模式识别(心理学) 人工智能 支持向量机 水准点(测量) 判别式 特征向量 数学 计算机科学 核(代数) 大地测量学 语言学 组合数学 哲学 地理
作者
Hong-Jie Xing,Ping Ping Zhang,Hong-Jie Xing,Ping Ping Zhang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:143: 109820-109820 被引量:10
标识
DOI:10.1016/j.patcog.2023.109820
摘要

In comparison with support vector data description (SVDD), deep SVDD (DSVDD) is more suitable for dealing with large-scale data sets. DSVDD uses mapping network to replace the role of kernel mapping in SVDD. Moreover, the objective of DSVDD is to simultaneously learn the optimal connection weights of mapping network and the minimum volume of hypersphere. To further improve the performance of DSVDD for tackling large-scale data sets and obtain the discriminative features of the given samples in a self-supervised learning manner, contrastive DSVDD (CDSVDD) is proposed in this study. In the pre-training phase of CDSVDD, the contrastive loss and the rotation prediction loss are jointly minimized to achieve the optimal feature representations. Furthermore, the learned feature representations are utilized to determine the hypersphere center. In the training phase of CDSVDD, the distances between the obtained feature representations and the hypersphere center together with the contrastive loss are simultaneously minimized to derive the optimal network connection weights, the minimum volume of hypersphere and the optimal feature representations. In addition, CDSVDD can efficiently solve the hypersphere collapse problem of DSVDD. The ablation study on CDSVDD verifies that compared with the case of determining the hypersphere center by the feature representations of the original samples, the hypersphere center determined by the feature representations of the augmented samples makes CDSVDD achieve better hypersphere boundary and more compact feature representations. Experimental results on the four benchmark data sets demonstrate that the proposed CDSVDD acquires better detection performance in comparison with its six pertinent methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lixiaorui发布了新的文献求助30
1秒前
15秒前
16秒前
cool_随风发布了新的文献求助10
21秒前
Jj7完成签到,获得积分10
22秒前
27秒前
cool_随风发布了新的文献求助10
45秒前
sissiarno应助科研通管家采纳,获得30
47秒前
52秒前
平淡如天完成签到,获得积分10
1分钟前
1分钟前
美满尔蓝完成签到,获得积分10
1分钟前
1分钟前
1分钟前
beplayer1完成签到,获得积分10
1分钟前
顾建瑜完成签到,获得积分20
1分钟前
拼命三完成签到 ,获得积分10
1分钟前
顾建瑜发布了新的文献求助10
1分钟前
poser发布了新的文献求助150
1分钟前
1分钟前
cool_随风发布了新的文献求助10
1分钟前
晨曦呢完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
鹭江发布了新的文献求助10
2分钟前
科研通AI5应助小时了了采纳,获得10
2分钟前
BowieHuang应助嘻嘻哈哈采纳,获得90
2分钟前
2分钟前
万能图书馆应助cool_随风采纳,获得10
2分钟前
善学以致用应助kkk采纳,获得10
2分钟前
读研霹雳完成签到 ,获得积分10
2分钟前
2分钟前
poser完成签到,获得积分10
2分钟前
田様应助舒服的觅夏采纳,获得10
2分钟前
健忘的溪灵完成签到 ,获得积分10
2分钟前
嘻嘻哈哈发布了新的文献求助90
2分钟前
2分钟前
kkk发布了新的文献求助10
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5254321
求助须知:如何正确求助?哪些是违规求助? 4417277
关于积分的说明 13751164
捐赠科研通 4289914
什么是DOI,文献DOI怎么找? 2353881
邀请新用户注册赠送积分活动 1350523
关于科研通互助平台的介绍 1310666