Contrastive deep support vector data description

超球体 特征(语言学) 模式识别(心理学) 人工智能 支持向量机 水准点(测量) 判别式 特征向量 数学 计算机科学 核(代数) 哲学 语言学 大地测量学 组合数学 地理
作者
Hong-Jie Xing,Ping Ping Zhang,Hong-Jie Xing,Ping Ping Zhang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:143: 109820-109820 被引量:10
标识
DOI:10.1016/j.patcog.2023.109820
摘要

In comparison with support vector data description (SVDD), deep SVDD (DSVDD) is more suitable for dealing with large-scale data sets. DSVDD uses mapping network to replace the role of kernel mapping in SVDD. Moreover, the objective of DSVDD is to simultaneously learn the optimal connection weights of mapping network and the minimum volume of hypersphere. To further improve the performance of DSVDD for tackling large-scale data sets and obtain the discriminative features of the given samples in a self-supervised learning manner, contrastive DSVDD (CDSVDD) is proposed in this study. In the pre-training phase of CDSVDD, the contrastive loss and the rotation prediction loss are jointly minimized to achieve the optimal feature representations. Furthermore, the learned feature representations are utilized to determine the hypersphere center. In the training phase of CDSVDD, the distances between the obtained feature representations and the hypersphere center together with the contrastive loss are simultaneously minimized to derive the optimal network connection weights, the minimum volume of hypersphere and the optimal feature representations. In addition, CDSVDD can efficiently solve the hypersphere collapse problem of DSVDD. The ablation study on CDSVDD verifies that compared with the case of determining the hypersphere center by the feature representations of the original samples, the hypersphere center determined by the feature representations of the augmented samples makes CDSVDD achieve better hypersphere boundary and more compact feature representations. Experimental results on the four benchmark data sets demonstrate that the proposed CDSVDD acquires better detection performance in comparison with its six pertinent methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我来也完成签到 ,获得积分10
刚刚
吱吱发布了新的文献求助10
1秒前
2秒前
情书完成签到,获得积分10
2秒前
2秒前
2秒前
研友_VZG7GZ应助远志采纳,获得10
2秒前
3秒前
3秒前
4秒前
bkagyin应助小马儿采纳,获得10
4秒前
小竹笋完成签到,获得积分10
4秒前
5秒前
烂漫的涫完成签到 ,获得积分10
5秒前
6秒前
6秒前
开心的绮玉完成签到,获得积分10
7秒前
Wang发布了新的文献求助10
7秒前
牛6发布了新的文献求助10
8秒前
英姑应助蓝精灵采纳,获得10
8秒前
8秒前
KTdyd完成签到,获得积分10
9秒前
xiaohei发布了新的文献求助10
9秒前
领导范儿应助余生请指教采纳,获得10
10秒前
10秒前
10秒前
11秒前
斯文败类应助核桃采纳,获得30
12秒前
深情安青应助核桃采纳,获得10
12秒前
Ava应助核桃采纳,获得10
12秒前
研友_VZG7GZ应助核桃采纳,获得10
12秒前
Ava应助核桃采纳,获得10
12秒前
搜集达人应助核桃采纳,获得10
12秒前
传奇3应助核桃采纳,获得10
12秒前
慕青应助核桃采纳,获得10
12秒前
慕青应助核桃采纳,获得10
12秒前
12秒前
13秒前
远志发布了新的文献求助10
14秒前
王图图发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5394134
求助须知:如何正确求助?哪些是违规求助? 4515426
关于积分的说明 14053922
捐赠科研通 4426623
什么是DOI,文献DOI怎么找? 2431456
邀请新用户注册赠送积分活动 1423562
关于科研通互助平台的介绍 1402541