Efficient Photoelectrochemical Hydrogen Generation Using Eco-Friendly “Giant” InP/ZnSe Core/Shell Quantum Dots

材料科学 钝化 量子点 光电子学 光电流 带隙 壳体(结构) 量子隧道 纳米技术 图层(电子) 复合材料
作者
Jiabin Liu,Shuai Yue,Hui Zhang,Chao Wang,David Barba,François Vidal,Shuhui Sun,Zhiming M. Wang,Jiming Bao,Haiguang Zhao,Gurpreet Singh Selopal,Federico Rosei
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (29): 34797-34808 被引量:18
标识
DOI:10.1021/acsami.3c04900
摘要

InP quantum dots (QDs) are promising building blocks for use in solar technologies because of their low intrinsic toxicity, narrow bandgap, large absorption coefficient, and low-cost solution synthesis. However, the high surface trap density of InP QDs reduces their energy conversion efficiency and degrades their long-term stability. Encapsulating InP QDs into a wider bandgap shell is desirable to eliminate surface traps and improve optoelectronic properties. Here, we report the synthesis of "giant" InP/ZnSe core/shell QDs with tunable ZnSe shell thickness to investigate the effect of the shell thickness on the optoelectronic properties and the photoelectrochemical (PEC) performance for hydrogen generation. The optical results demonstrate that ZnSe shell growth (0.9-2.8 nm) facilitates the delocalization of electrons and holes into the shell region. The ZnSe shell simultaneously acts as a passivation layer to protect the surface of InP QDs and as a spatial tunneling barrier to extract photoexcited electrons and holes. Thus, engineering the ZnSe shell thickness is crucial for the photoexcited electrons and hole transfer dynamics to tune the optoelectronic properties of "giant" InP/ZnSe core/shell QDs. We obtained an outstanding photocurrent density of 6.2 mA cm-1 for an optimal ZnSe shell thickness of 1.6 nm, which is 288% higher than the values achieved from bare InP QD-based PEC cells. Understanding the effect of shell thickness on surface passivation and carrier dynamics offers fundamental insights into the suitable design and realization of eco-friendly InP-based "giant" core/shell QDs toward improving device performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ljj722发布了新的文献求助10
1秒前
1秒前
科研通AI6应助Eliauk采纳,获得10
1秒前
1秒前
xuan发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
领导范儿应助冰淇淋采纳,获得20
4秒前
楚天正阔发布了新的文献求助10
4秒前
4秒前
小九九完成签到 ,获得积分10
4秒前
4秒前
4秒前
4秒前
Joy发布了新的文献求助10
5秒前
轻松的又晴完成签到,获得积分10
5秒前
fafafa发布了新的文献求助10
5秒前
超能力完成签到,获得积分10
5秒前
laber完成签到,获得积分0
6秒前
小豹子完成签到,获得积分10
6秒前
6秒前
6秒前
小潘同学完成签到,获得积分10
6秒前
nnn发布了新的文献求助10
6秒前
7秒前
jie酱拌面发布了新的文献求助10
7秒前
7秒前
平常的如风完成签到,获得积分10
7秒前
李爱国应助Great采纳,获得10
8秒前
8秒前
大火炉完成签到 ,获得积分20
8秒前
mindseye发布了新的文献求助10
8秒前
Persevere完成签到,获得积分10
8秒前
rongyiming发布了新的文献求助10
9秒前
巍峨发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
bkagyin应助俊逸的代曼采纳,获得10
10秒前
司马绮山发布了新的文献求助10
10秒前
打打应助xiaohuipan采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653747
求助须知:如何正确求助?哪些是违规求助? 4790572
关于积分的说明 15066040
捐赠科研通 4812391
什么是DOI,文献DOI怎么找? 2574512
邀请新用户注册赠送积分活动 1530011
关于科研通互助平台的介绍 1488724