Efficient Photoelectrochemical Hydrogen Generation Using Eco-Friendly “Giant” InP/ZnSe Core/Shell Quantum Dots

材料科学 钝化 量子点 光电子学 光电流 带隙 壳体(结构) 量子隧道 纳米技术 异质结 图层(电子) 复合材料
作者
Jiabin Liu,Shuai Yue,Hui Zhang,Chao Wang,David Barba,François Vidal,Shuhui Sun,Zhiming M. Wang,Jiming Bao,Haiguang Zhao,Gurpreet Singh Selopal,Federico Rosei
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (29): 34797-34808 被引量:3
标识
DOI:10.1021/acsami.3c04900
摘要

InP quantum dots (QDs) are promising building blocks for use in solar technologies because of their low intrinsic toxicity, narrow bandgap, large absorption coefficient, and low-cost solution synthesis. However, the high surface trap density of InP QDs reduces their energy conversion efficiency and degrades their long-term stability. Encapsulating InP QDs into a wider bandgap shell is desirable to eliminate surface traps and improve optoelectronic properties. Here, we report the synthesis of "giant" InP/ZnSe core/shell QDs with tunable ZnSe shell thickness to investigate the effect of the shell thickness on the optoelectronic properties and the photoelectrochemical (PEC) performance for hydrogen generation. The optical results demonstrate that ZnSe shell growth (0.9-2.8 nm) facilitates the delocalization of electrons and holes into the shell region. The ZnSe shell simultaneously acts as a passivation layer to protect the surface of InP QDs and as a spatial tunneling barrier to extract photoexcited electrons and holes. Thus, engineering the ZnSe shell thickness is crucial for the photoexcited electrons and hole transfer dynamics to tune the optoelectronic properties of "giant" InP/ZnSe core/shell QDs. We obtained an outstanding photocurrent density of 6.2 mA cm-1 for an optimal ZnSe shell thickness of 1.6 nm, which is 288% higher than the values achieved from bare InP QD-based PEC cells. Understanding the effect of shell thickness on surface passivation and carrier dynamics offers fundamental insights into the suitable design and realization of eco-friendly InP-based "giant" core/shell QDs toward improving device performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
昵昵昵昵呀完成签到,获得积分20
2秒前
彭于晏应助欣然采纳,获得10
2秒前
林大侠发布了新的文献求助10
2秒前
2秒前
T拐拐发布了新的文献求助10
3秒前
3秒前
llm关注了科研通微信公众号
3秒前
灵巧秋天发布了新的文献求助10
4秒前
月下荷花发布了新的文献求助10
4秒前
_Dearlxy发布了新的文献求助10
4秒前
TUC123完成签到,获得积分10
4秒前
5秒前
5秒前
咪吖发布了新的文献求助10
6秒前
faye完成签到,获得积分10
7秒前
摆烂小咸鱼完成签到,获得积分20
7秒前
隐形曼青应助张可乐采纳,获得10
8秒前
852应助111采纳,获得10
8秒前
whatever举报勤恳小李求助涉嫌违规
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
chensihao发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
酷波er应助songjin采纳,获得10
11秒前
11秒前
11秒前
言无间发布了新的文献求助10
11秒前
李健的粉丝团团长应助awoe采纳,获得10
11秒前
科目三应助frank采纳,获得10
12秒前
osel发布了新的文献求助10
12秒前
玉灵子发布了新的文献求助10
12秒前
谨慎的哈密瓜给谨慎的哈密瓜的求助进行了留言
12秒前
wweq发布了新的文献求助10
12秒前
Liu发布了新的文献求助100
13秒前
Rina发布了新的文献求助10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979146
求助须知:如何正确求助?哪些是违规求助? 3523056
关于积分的说明 11215854
捐赠科研通 3260487
什么是DOI,文献DOI怎么找? 1800049
邀请新用户注册赠送积分活动 878813
科研通“疑难数据库(出版商)”最低求助积分说明 807092