亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning guided hydrothermal synthesis of thermochromic VO2 nanoparticles

材料科学 水热合成 差示扫描量热法 单斜晶系 相变 二氧化二钒 纳米颗粒 机器学习 人工智能 化学工程 热液循环 纳米技术 计算机科学 热力学 晶体结构 结晶学 工程类 化学 物理 薄膜
作者
Yongxing Chen,Haining Ji,Mingying Lu,Bin Liu,Yong Zhao,Yangyong Ou,Yi Wang,Jundong Tao,Ting Zou,Yan Huang,Junlong Wang
出处
期刊:Ceramics International [Elsevier]
卷期号:49 (18): 30794-30800 被引量:27
标识
DOI:10.1016/j.ceramint.2023.07.035
摘要

Vanadium dioxide (VO2) is a promising material for energy-saving smart windows due to its reversible metal-to-insulator transition near room temperature, concomitantly with a structural phase transition between monoclinic VO2(M) phase and rutile VO2(R) phase. However, the fact that VO2 has a complex crystalline phase makes its reliable synthesis an obstacle to its practical application. Machine learning (ML), a specific subset of artificial intelligence, can be utilized to generate virtual representations of experimental conditions and outcomes for the purpose of predicting experiments. Therefore, in the paper, four machine learning models were trained to perform optimization of the VO2 hydrothermal synthesis. A random forest model achieved a classification accuracy of 87.27%. The synthetic parameter space was explored to filter combinations with a synthetic probability above 90%. Random forest models were used to guide the experimental synthesis, and the obtained products were characterized using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and differential scanning calorimetry. The results showed that phase-pure VO2(B) and VO2(M) were successfully synthesized, demonstrating the effectiveness of machine learning in optimizing material synthesis, alleviating the stochasticity of material synthesis caused by the control of synthesis conditions, and promoting the application research of VO2 materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
FLANKS发布了新的文献求助10
10秒前
平淡的衣完成签到,获得积分10
17秒前
NexusExplorer应助AXX041795采纳,获得10
24秒前
星星科语发布了新的文献求助10
24秒前
简单发布了新的文献求助20
25秒前
魔幻的芳完成签到,获得积分10
29秒前
SSY发布了新的文献求助10
29秒前
火星上的宝马完成签到,获得积分10
32秒前
平淡的衣发布了新的文献求助20
33秒前
34秒前
悲凉的忆南完成签到,获得积分10
35秒前
量子星尘发布了新的文献求助10
39秒前
陈旧完成签到,获得积分10
39秒前
42秒前
42秒前
欣欣子完成签到,获得积分10
43秒前
虚拟的清炎完成签到 ,获得积分10
45秒前
sunstar完成签到,获得积分10
46秒前
XXXXXX发布了新的文献求助10
49秒前
yxl完成签到,获得积分10
50秒前
可耐的盈完成签到,获得积分10
53秒前
绿毛水怪完成签到,获得积分10
56秒前
yg发布了新的文献求助10
58秒前
lsc完成签到,获得积分10
1分钟前
XXXXXX完成签到,获得积分10
1分钟前
1分钟前
星星科语完成签到,获得积分20
1分钟前
小fei完成签到,获得积分10
1分钟前
andrele发布了新的文献求助10
1分钟前
麻辣薯条完成签到,获得积分10
1分钟前
hanlin给滕祥的求助进行了留言
1分钟前
时尚身影完成签到,获得积分10
1分钟前
leoduo完成签到,获得积分0
1分钟前
ryx发布了新的文献求助10
1分钟前
流苏2完成签到,获得积分10
1分钟前
1分钟前
斯文败类应助科研通管家采纳,获得30
1分钟前
上官若男应助科研通管家采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723656
求助须知:如何正确求助?哪些是违规求助? 5279993
关于积分的说明 15299011
捐赠科研通 4872033
什么是DOI,文献DOI怎么找? 2616484
邀请新用户注册赠送积分活动 1566311
关于科研通互助平台的介绍 1523187