Machine learning guided hydrothermal synthesis of thermochromic VO2 nanoparticles

材料科学 水热合成 差示扫描量热法 单斜晶系 相变 二氧化二钒 纳米颗粒 机器学习 人工智能 化学工程 热液循环 纳米技术 计算机科学 热力学 晶体结构 结晶学 工程类 化学 物理 薄膜
作者
Yongxing Chen,Haining Ji,Mingying Lu,Bin Liu,Yong Zhao,Yangyong Ou,Yi Wang,Jundong Tao,Ting Zou,Yan Huang,Junlong Wang
出处
期刊:Ceramics International [Elsevier BV]
卷期号:49 (18): 30794-30800 被引量:18
标识
DOI:10.1016/j.ceramint.2023.07.035
摘要

Vanadium dioxide (VO2) is a promising material for energy-saving smart windows due to its reversible metal-to-insulator transition near room temperature, concomitantly with a structural phase transition between monoclinic VO2(M) phase and rutile VO2(R) phase. However, the fact that VO2 has a complex crystalline phase makes its reliable synthesis an obstacle to its practical application. Machine learning (ML), a specific subset of artificial intelligence, can be utilized to generate virtual representations of experimental conditions and outcomes for the purpose of predicting experiments. Therefore, in the paper, four machine learning models were trained to perform optimization of the VO2 hydrothermal synthesis. A random forest model achieved a classification accuracy of 87.27%. The synthetic parameter space was explored to filter combinations with a synthetic probability above 90%. Random forest models were used to guide the experimental synthesis, and the obtained products were characterized using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and differential scanning calorimetry. The results showed that phase-pure VO2(B) and VO2(M) were successfully synthesized, demonstrating the effectiveness of machine learning in optimizing material synthesis, alleviating the stochasticity of material synthesis caused by the control of synthesis conditions, and promoting the application research of VO2 materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助科研通管家采纳,获得10
刚刚
大个应助科研通管家采纳,获得10
刚刚
瘦瘦依白应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
刚刚
yar应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
1秒前
烟花应助科研通管家采纳,获得30
1秒前
坦率的匪应助科研通管家采纳,获得20
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
pluto应助科研通管家采纳,获得10
1秒前
执念完成签到,获得积分10
1秒前
1秒前
yar应助科研通管家采纳,获得10
1秒前
李爱国应助Gheros采纳,获得10
2秒前
在水一方应助1234采纳,获得10
2秒前
背后的桐发布了新的文献求助10
2秒前
在水一方应助Sylvia0528采纳,获得10
2秒前
完美世界应助舒适的店员采纳,获得10
2秒前
3秒前
Zever完成签到,获得积分10
3秒前
怡然的便当完成签到,获得积分10
3秒前
英姑应助haorui采纳,获得10
4秒前
4秒前
开放怀亦发布了新的文献求助10
4秒前
Zhuhaimao发布了新的文献求助10
4秒前
xiaohua关注了科研通微信公众号
4秒前
自觉灵凡完成签到 ,获得积分10
4秒前
亦安完成签到,获得积分10
5秒前
bingbing发布了新的文献求助10
5秒前
王AA完成签到,获得积分10
5秒前
wdy111举报阿斯师大求助涉嫌违规
5秒前
6秒前
6秒前
pqy发布了新的文献求助10
6秒前
无眠宇宙发布了新的文献求助20
6秒前
CodeCraft应助包容的琦采纳,获得10
7秒前
怕孤独的修杰完成签到 ,获得积分10
7秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635