Self-supervised Deep Heterogeneous Graph Neural Networks with Contrastive Learning

计算机科学 人工智能 图形 判别式 编码器 特征学习 骨料(复合) 机器学习 深度学习 理论计算机科学 深层神经网络 人工神经网络 材料科学 复合材料 操作系统
作者
Zhiping Li,Fangfang Yuan,Cong Cao,Dakui Wang,Jie Feng,Baoke Li,Yanbing Liu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 268-282
标识
DOI:10.1007/978-3-031-35995-8_19
摘要

Heterogeneous graph neural networks have shown superior capabilities on graphs that contain multiple types of entities with rich semantic information. However, they are usually (semi-)supervised learning methods which rely on costly task-specific labeled data. Due to the problem of label sparsity on heterogeneous graphs, the performance of these methods is limited, prompting the emergence of some self-supervised learning methods. However, most of self-supervised methods aggregate meta-path based neighbors without considering implicit neighbors that also contain rich information, and the mining of implicit neighbors is accompanied by the problem of introducing irrelevant nodes. Therefore, in this paper we propose a self-supervised deep heterogeneous graph neural networks with contrastive learning (DHG-CL) which not only preserves the information of implicitly valuable neighbors but also further enhances the distinguishability of node representations. Specifically, (1) we design a cross-layer semantic encoder to incorporate information from different high-order neighbors through message passing across layers; and then (2) we design a graph-based contrastive learning task to distinguish semantically dissimilar nodes, further obtaining discriminative node representations. Extensive experiments conducted on a variety of real-world heterogeneous graphs show that our proposed DHG-CL outperforms the state-of-the-arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的粉丝团团长应助tim采纳,获得10
刚刚
刚刚
木南发布了新的文献求助10
刚刚
青塘龙仔发布了新的文献求助10
刚刚
猇会不会完成签到,获得积分20
刚刚
林安笙完成签到,获得积分10
刚刚
SciGPT应助杆杆采纳,获得10
1秒前
浮游应助wsh071117采纳,获得10
1秒前
慕青应助dxm采纳,获得10
1秒前
自觉画板发布了新的文献求助10
1秒前
2秒前
汉堡包应助HM采纳,获得10
2秒前
3秒前
李健的小迷弟应助小畅采纳,获得10
3秒前
3秒前
香蕉觅云应助zyd采纳,获得10
3秒前
CodeCraft应助瑶瑶采纳,获得10
3秒前
肥猫发布了新的文献求助10
4秒前
球球发布了新的文献求助10
5秒前
水水水完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
森陌夏栀发布了新的文献求助10
5秒前
123应助雷涵晶采纳,获得10
6秒前
6秒前
Bai_shao完成签到,获得积分10
6秒前
7秒前
Daily发布了新的文献求助10
7秒前
阳佟水蓉完成签到,获得积分10
7秒前
7秒前
英姑应助鲜艳的手链采纳,获得10
8秒前
8秒前
8秒前
9秒前
欣欣完成签到 ,获得积分10
9秒前
香蕉觅云应助龚仕杰采纳,获得10
9秒前
淡淡芷天应助球球采纳,获得10
9秒前
Zhang完成签到,获得积分10
9秒前
邱雪辉完成签到,获得积分10
9秒前
10秒前
隐形曼青应助刘欣采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5098708
求助须知:如何正确求助?哪些是违规求助? 4310813
关于积分的说明 13432372
捐赠科研通 4138156
什么是DOI,文献DOI怎么找? 2267123
邀请新用户注册赠送积分活动 1270164
关于科研通互助平台的介绍 1206454