Self-supervised Deep Heterogeneous Graph Neural Networks with Contrastive Learning

计算机科学 人工智能 图形 判别式 编码器 特征学习 骨料(复合) 机器学习 深度学习 理论计算机科学 深层神经网络 人工神经网络 材料科学 复合材料 操作系统
作者
Zhiping Li,Fangfang Yuan,Cong Cao,Dakui Wang,Jie Feng,Baoke Li,Yanbing Liu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 268-282
标识
DOI:10.1007/978-3-031-35995-8_19
摘要

Heterogeneous graph neural networks have shown superior capabilities on graphs that contain multiple types of entities with rich semantic information. However, they are usually (semi-)supervised learning methods which rely on costly task-specific labeled data. Due to the problem of label sparsity on heterogeneous graphs, the performance of these methods is limited, prompting the emergence of some self-supervised learning methods. However, most of self-supervised methods aggregate meta-path based neighbors without considering implicit neighbors that also contain rich information, and the mining of implicit neighbors is accompanied by the problem of introducing irrelevant nodes. Therefore, in this paper we propose a self-supervised deep heterogeneous graph neural networks with contrastive learning (DHG-CL) which not only preserves the information of implicitly valuable neighbors but also further enhances the distinguishability of node representations. Specifically, (1) we design a cross-layer semantic encoder to incorporate information from different high-order neighbors through message passing across layers; and then (2) we design a graph-based contrastive learning task to distinguish semantically dissimilar nodes, further obtaining discriminative node representations. Extensive experiments conducted on a variety of real-world heterogeneous graphs show that our proposed DHG-CL outperforms the state-of-the-arts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rita完成签到,获得积分10
1秒前
李健的小迷弟应助神明采纳,获得10
1秒前
qian完成签到,获得积分10
1秒前
2秒前
归尘应助qin采纳,获得10
2秒前
谯殿艺完成签到,获得积分10
3秒前
动听帆布鞋完成签到,获得积分10
3秒前
罗霄山完成签到,获得积分10
4秒前
科研通AI2S应助杨pangpang采纳,获得10
4秒前
3636发布了新的文献求助10
5秒前
愤怒的豌豆完成签到,获得积分10
5秒前
起名完成签到,获得积分10
5秒前
咖飞发布了新的文献求助10
6秒前
Lemonzhao发布了新的文献求助10
7秒前
mm关闭了mm文献求助
7秒前
Fuffu发布了新的文献求助10
7秒前
充电宝应助liuzengzhang666采纳,获得10
8秒前
8秒前
susu完成签到,获得积分10
8秒前
CipherSage应助suchashing采纳,获得30
8秒前
SciGPT应助yunai采纳,获得10
9秒前
危机的雍完成签到 ,获得积分10
9秒前
9秒前
CipherSage应助任小九采纳,获得20
9秒前
yao学渣完成签到 ,获得积分10
9秒前
wangtongxue完成签到 ,获得积分10
9秒前
9秒前
xiaohua完成签到,获得积分10
9秒前
10秒前
兴奋不二完成签到,获得积分10
10秒前
科研冰山发布了新的文献求助10
11秒前
lara发布了新的文献求助10
11秒前
云微颖完成签到,获得积分10
11秒前
Owen应助芹菜煎蛋采纳,获得10
12秒前
深情安青应助夏侯无色采纳,获得10
13秒前
wan发布了新的文献求助10
13秒前
鹏鱼燕完成签到,获得积分10
13秒前
冷语发布了新的文献求助10
13秒前
dong完成签到,获得积分10
13秒前
桐桐应助haha采纳,获得10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960532
求助须知:如何正确求助?哪些是违规求助? 3506818
关于积分的说明 11132262
捐赠科研通 3239114
什么是DOI,文献DOI怎么找? 1789985
邀请新用户注册赠送积分活动 872079
科研通“疑难数据库(出版商)”最低求助积分说明 803128