趋同(经济学)
人工神经网络
计算机科学
有限元法
序列(生物学)
编码(集合论)
波动方程
应用数学
边值问题
边界(拓扑)
数值分析
算法
数学
数学分析
人工智能
物理
遗传学
生物
热力学
经济增长
经济
集合(抽象数据类型)
程序设计语言
作者
Paweł Maczuga,Maciej Paszyński
标识
DOI:10.1007/978-3-031-35995-8_6
摘要
In this paper, we consider a model wave equation. We perform a sequence of numerical experiments with Physics Informed Neural Network, considering different activation functions, and different ways of enforcing the initial and boundary conditions. We show the convergence of the method and the resulting numerical accuracy for different setups. We show that, indeed, the PINN methodology can solve the problem efficiently and accurately the wave-equations without actually solving a system of linear equations as it happens in traditional numerical methods like, e.g., finite element or finite difference method. In particular, we compare the influence of selected activation functions on the convergence of the PINN method. Our PINN code is available on github: https://github.com/pmaczuga/pinn-comparison/tree/iccs .
科研通智能强力驱动
Strongly Powered by AbleSci AI