WNet: W-Shaped Hierarchical Network for Remote-Sensing Image Change Detection

计算机科学 变压器 编码器 人工智能 卷积神经网络 像素 特征提取 模式识别(心理学) 计算机视觉 遥感 地理 电压 物理 量子力学 操作系统
作者
Xu Tang,Tianxiang Zhang,Jingjing Ma,Xiangrong Zhang,Fang Liu,Licheng Jiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:4
标识
DOI:10.1109/tgrs.2023.3296383
摘要

Change detection (CD) is a hot research topic in the remote sensing (RS) community. With the increasing availability of high-resolution (HR) RS images, there is a growing demand for CD models with high detection accuracy and generalization ability. In other words, the CD models are expected to work well for various HRRS images. Convolutional neural networks (CNNs) have been dominated in HRRS image CD due to their excellent information extraction and nonlinear fitting capabilities. However, they are not skilled in modeling long-range contexts hidden in HRRS images, which limits their performance in CD tasks more or less. Recently, the Transformer, which is good at extracting global context dependencies, has become popular in the RS community. Nevertheless, detailed local knowledge receives insufficient emphasis in common Transformers. Considering the above discussion, we combine CNN and Transformer and propose a new W-shaped dual Siamese branch hierarchical network for HRRS image CD named WNet. WNet first incorporates a Siamese CNN and a Siamese Transformer into a dual-branch encoder to extract multi-level local fine-grained features and global long-range contextual dependencies. Also, we introduce deformable ideas into the Siamese CNN and Transformer to make WNet understand the critical and irregular areas within HRRS images. Second, the difference enhancement module (DEM) is developed and embedded into the encoder to produce the difference feature maps at different levels. Using simple pixel-wise subtraction and channel-wise concatenation, the changes of interest and irrelevant changes can be highlighted and suppressed in a learnable manner. Next, the multi-level difference feature maps are fused stage by stage by CNN-Transformer fusion modules (CTFMs), which are the basic units of the decoder in WNet. In CTFM, the local, global, and cross-scale clues are taken into account to ensure the integrity of information. Finally, a simple classifier is constructed and added at the top of the decoder to predict the change maps. Positive experimental results counted on four public datasets demonstrate that the proposed WNet is helpful in HRRS image CD tasks. Our source codes are available at https://github.com/TangXu-Group/Remote-Sensing-Image-Change-Detection/tree/main/WNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无恙发布了新的文献求助30
1秒前
2秒前
白介素-11发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
6秒前
7秒前
唐响完成签到,获得积分20
8秒前
熏香澡牝完成签到,获得积分10
8秒前
9秒前
赛赛发布了新的文献求助10
9秒前
zzt37927发布了新的文献求助10
9秒前
小马甲应助烤红薯采纳,获得10
9秒前
xiaoxiaojiang发布了新的文献求助10
9秒前
11秒前
研友_xLOMQZ完成签到,获得积分10
11秒前
11秒前
echo发布了新的文献求助10
11秒前
李鱼丸完成签到,获得积分10
12秒前
大个应助半生瓜采纳,获得10
12秒前
米米米发布了新的文献求助10
12秒前
六六六发布了新的文献求助10
12秒前
研友_VZG7GZ应助干净的烧鹅采纳,获得10
12秒前
13秒前
14秒前
郑万恶完成签到 ,获得积分10
15秒前
15秒前
萧七七发布了新的文献求助10
15秒前
搜集达人应助忐忑的冷卉采纳,获得10
15秒前
永远55度发布了新的文献求助10
16秒前
勤劳水香发布了新的文献求助10
16秒前
zhibaishouhei完成签到,获得积分10
17秒前
科研通AI2S应助LL采纳,获得10
19秒前
贪玩菲音发布了新的文献求助10
20秒前
20秒前
20秒前
21秒前
21秒前
CipherSage应助研友_LOoomL采纳,获得10
21秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228750
求助须知:如何正确求助?哪些是违规求助? 2876508
关于积分的说明 8195369
捐赠科研通 2543774
什么是DOI,文献DOI怎么找? 1373981
科研通“疑难数据库(出版商)”最低求助积分说明 646872
邀请新用户注册赠送积分活动 621469