Asymptotic Analysis of Federated Learning Under Event-Triggered Communication

计算机科学 趋同(经济学) GSM演进的增强数据速率 随机梯度下降算法 中心极限定理 收敛速度 事件(粒子物理) 无线 通信系统 算法 计算机网络 人工智能 数学 人工神经网络 电信 统计 频道(广播) 物理 量子力学 经济 经济增长
作者
Xingkang He,Xinlei Yi,Yanlong Zhao,Karl Henrik Johansson,Vijay Gupta
出处
期刊:IEEE Transactions on Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:71: 2654-2667
标识
DOI:10.1109/tsp.2023.3295734
摘要

Federated learning (FL) is a collaborative machine learning (ML) paradigm based on persistent communication between a central server and multiple edge devices. However, frequent communication of large ML models can incur considerable communication resources, especially costly for wireless network nodes. In this paper, we develop a communication-efficient protocol to reduce the number of communication instances in each round while maintaining convergence rate and asymptotic distribution properties. First, we propose a novel communication-efficient FL algorithm that utilizes an event-triggered communication mechanism, where each edge device updates the model by using stochastic gradient descent with local sampling data and the central server aggregates all local models from the devices by using model averaging. Communication can be reduced since each edge device and the central server transmits its updated model only when the difference between the current model and the last communicated model is larger than a threshold. Thresholds of the devices and server are not necessarily coordinated, and the thresholds and step sizes are not constrained to be of specific forms. Under mild conditions on loss functions, step sizes and thresholds, for the proposed algorithm, we establish asymptotic analysis results in three ways, respectively: convergence in expectation, almost-sure convergence, and asymptotic distribution of the estimation error. In addition, we show that by fine-tunning the parameters, the proposed event-triggered FL algorithm can reach the same convergence rate as state-of-the-art results from existing time-driven FL. We also establish asymptotic efficiency in the sense of Central Limit Theorem of the estimation error. Numerical simulations for linear regression and image classification problems in the literature are provided to show the effectiveness of the developed results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Orange应助搞对采纳,获得10
1秒前
上官若男应助神龙尊者采纳,获得10
2秒前
Clearly发布了新的文献求助10
3秒前
yls发布了新的文献求助10
4秒前
鹿友绿完成签到,获得积分10
4秒前
4秒前
丘比特应助沛文采纳,获得10
5秒前
5秒前
5秒前
zxx0126完成签到,获得积分20
5秒前
Cc完成签到,获得积分10
6秒前
sx完成签到 ,获得积分10
8秒前
柳香芦发布了新的文献求助10
8秒前
8秒前
8秒前
tangyimmo发布了新的文献求助10
8秒前
李圳铭发布了新的文献求助10
9秒前
请叫我风吹麦浪应助青思采纳,获得10
10秒前
小研究牲完成签到,获得积分20
11秒前
asd发布了新的文献求助10
11秒前
Cc发布了新的文献求助10
11秒前
11秒前
刘锦裕完成签到,获得积分10
13秒前
小研究牲发布了新的文献求助10
13秒前
bkagyin应助wenbin采纳,获得10
13秒前
16秒前
19秒前
19秒前
laiyiklam完成签到,获得积分10
19秒前
19秒前
周星星完成签到 ,获得积分20
19秒前
科目三应助zed采纳,获得10
20秒前
小孟要努力完成签到,获得积分10
21秒前
21秒前
乐乐应助sabet采纳,获得10
21秒前
绿叶完成签到,获得积分20
22秒前
完美世界应助璐璇采纳,获得10
23秒前
23秒前
24秒前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 500
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3444074
求助须知:如何正确求助?哪些是违规求助? 3040086
关于积分的说明 8980149
捐赠科研通 2728773
什么是DOI,文献DOI怎么找? 1496652
科研通“疑难数据库(出版商)”最低求助积分说明 691803
邀请新用户注册赠送积分活动 689384