Asymptotic Analysis of Federated Learning Under Event-Triggered Communication

计算机科学 趋同(经济学) GSM演进的增强数据速率 随机梯度下降算法 中心极限定理 收敛速度 事件(粒子物理) 无线 通信系统 算法 计算机网络 人工智能 数学 人工神经网络 电信 统计 频道(广播) 物理 量子力学 经济 经济增长
作者
Xingkang He,Xinlei Yi,Yanlong Zhao,Karl Henrik Johansson,Vijay Gupta
出处
期刊:IEEE Transactions on Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:71: 2654-2667
标识
DOI:10.1109/tsp.2023.3295734
摘要

Federated learning (FL) is a collaborative machine learning (ML) paradigm based on persistent communication between a central server and multiple edge devices. However, frequent communication of large ML models can incur considerable communication resources, especially costly for wireless network nodes. In this paper, we develop a communication-efficient protocol to reduce the number of communication instances in each round while maintaining convergence rate and asymptotic distribution properties. First, we propose a novel communication-efficient FL algorithm that utilizes an event-triggered communication mechanism, where each edge device updates the model by using stochastic gradient descent with local sampling data and the central server aggregates all local models from the devices by using model averaging. Communication can be reduced since each edge device and the central server transmits its updated model only when the difference between the current model and the last communicated model is larger than a threshold. Thresholds of the devices and server are not necessarily coordinated, and the thresholds and step sizes are not constrained to be of specific forms. Under mild conditions on loss functions, step sizes and thresholds, for the proposed algorithm, we establish asymptotic analysis results in three ways, respectively: convergence in expectation, almost-sure convergence, and asymptotic distribution of the estimation error. In addition, we show that by fine-tunning the parameters, the proposed event-triggered FL algorithm can reach the same convergence rate as state-of-the-art results from existing time-driven FL. We also establish asymptotic efficiency in the sense of Central Limit Theorem of the estimation error. Numerical simulations for linear regression and image classification problems in the literature are provided to show the effectiveness of the developed results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
una完成签到 ,获得积分10
1秒前
1秒前
口香糖探长完成签到 ,获得积分10
1秒前
ldy发布了新的文献求助10
2秒前
yy发布了新的文献求助10
2秒前
shangchen发布了新的文献求助10
2秒前
科研通AI2S应助lily采纳,获得10
2秒前
小蘑菇应助碧蓝青梦采纳,获得10
2秒前
走过的风发布了新的文献求助10
2秒前
3秒前
3秒前
JamesPei应助悲凉的雪珍采纳,获得10
4秒前
伶俐悟空发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
suxiang应助Adam采纳,获得10
6秒前
了一李发布了新的文献求助20
6秒前
ZZZZZ完成签到,获得积分10
6秒前
6秒前
星辰大海应助俏皮的以晴采纳,获得10
7秒前
asd2221发布了新的文献求助10
7秒前
VIVA发布了新的文献求助10
8秒前
8秒前
inn发布了新的文献求助10
8秒前
8秒前
LLLLLLLL发布了新的文献求助10
9秒前
wanci应助小懒虫采纳,获得20
9秒前
9秒前
sharkmelon发布了新的文献求助10
10秒前
善学以致用应助优美静芙采纳,获得10
10秒前
Fu完成签到,获得积分10
10秒前
我是老大应助Georgelee采纳,获得10
10秒前
10秒前
g_f完成签到,获得积分20
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759448
求助须知:如何正确求助?哪些是违规求助? 5520206
关于积分的说明 15394058
捐赠科研通 4896538
什么是DOI,文献DOI怎么找? 2633747
邀请新用户注册赠送积分活动 1581851
关于科研通互助平台的介绍 1537271