A Location-Independent Human Activity Recognition Method Based on CSI: System, Architecture, Implementation

计算机科学 信道状态信息 图形 人工智能 一般化 推论 特征提取 机器学习 任务(项目管理) 数据挖掘 欧几里德距离 频道(广播) 模式识别(心理学) 无线 理论计算机科学 数学分析 经济 电信 管理 数学 计算机网络
作者
Yong Zhang,Andong Cheng,Bin Chen,Yujie Wang,Jia Lu
出处
期刊:IEEE Transactions on Mobile Computing [IEEE Computer Society]
卷期号:23 (5): 4793-4805
标识
DOI:10.1109/tmc.2023.3296987
摘要

In the application of human activity recognition (HAR) based on channel state information (CSI), due to the high dynamic characteristics of wireless channel to different environments, the features of human activity samples in different locations are different. In addition, the existing CSI-based HAR approaches limit the extraction of activity features to the Euclidean space and ignores the rich relational information between samples, categories and locations, which result in insufficient generalization performance for location-independent HAR. To address this challenge, this paper proposes a CSI-based location-independent HAR system CSI-MTGN. The system represents the classification task under each training sample collection location (TSCL) as a task, which is composed of three interactive parts: sample hidden representation, activity features extraction based on hierarchical graph neural network (HGNN) and information exchange based on multi-task learning. The proposed system improves the sample hidden representation, which is benefit for activity feature extraction and classification. The HGNN is designed to express various relationship information between samples, categories and locations in the form of graph structure, and the classification task under each TSCL is constructed through data augmentation, so as to improve the knowledge understanding and inference capabilities of the recognition model. The multi-task learning is used to achieve implicit data augmentation by sharing parameters among tasks through soft parameter sharing, and improves the generalization performance of the system. To validate the performance of the proposed system, experiments were conducted in a hall and a conference room, where samples of 10 categories of activities under 7 TSCLs were used for training the system, and the HAR accuracy rates at any locations were 94.1% and 93.3%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaxue发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
tp040900发布了新的文献求助10
2秒前
冬凌草应助生菜采纳,获得20
3秒前
莫封叶完成签到,获得积分10
5秒前
john完成签到,获得积分10
5秒前
clocksoar完成签到,获得积分10
5秒前
5秒前
5秒前
ding应助慈祥的煎蛋采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
5秒前
HW完成签到 ,获得积分10
6秒前
yoyo完成签到 ,获得积分10
6秒前
zoe完成签到,获得积分10
6秒前
Tangyartie完成签到 ,获得积分10
6秒前
李佳慧完成签到,获得积分10
6秒前
迷你的雁枫完成签到 ,获得积分10
8秒前
Jasen完成签到 ,获得积分10
8秒前
Scss完成签到,获得积分10
8秒前
向言之完成签到,获得积分10
9秒前
smottom应助Lny采纳,获得10
9秒前
噼里啪啦完成签到 ,获得积分10
11秒前
11秒前
舍得完成签到,获得积分10
11秒前
ttkd11完成签到,获得积分10
11秒前
12秒前
juphen2发布了新的文献求助30
12秒前
124cndhaP完成签到,获得积分10
13秒前
龙卡烧烤店完成签到,获得积分10
13秒前
哇哈完成签到 ,获得积分10
13秒前
学呀学完成签到 ,获得积分10
13秒前
研友_24789完成签到,获得积分10
14秒前
diony010完成签到,获得积分10
14秒前
妮妮完成签到,获得积分10
14秒前
愤怒的树叶完成签到,获得积分10
15秒前
Yy杨优秀完成签到 ,获得积分10
15秒前
Ayan完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009004
求助须知:如何正确求助?哪些是违规求助? 3548719
关于积分的说明 11299835
捐赠科研通 3283284
什么是DOI,文献DOI怎么找? 1810333
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259