可转让性
密度泛函理论
可扩展性
背景(考古学)
相关性(法律)
计算机科学
数据科学
学习理论
人工智能
机器学习
化学
计算化学
心理学
认知心理学
生物
数据库
古生物学
罗伊特
政治学
法学
作者
Bing Huang,Guido Falk von Rudorff,O. Anatole von Lilienfeld
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2023-07-13
卷期号:381 (6654): 170-175
被引量:69
标识
DOI:10.1126/science.abn3445
摘要
Density functional theory (DFT) plays a pivotal role for the chemical and materials science due to its relatively high predictive power, applicability, versatility and computational efficiency. We review recent progress in machine learning model developments which has relied heavily on density functional theory for synthetic data generation and for the design of model architectures. The general relevance of these developments is placed in some broader context for the chemical and materials sciences. Resulting in DFT based machine learning models with high efficiency, accuracy, scalability, and transferability (EAST), recent progress indicates probable ways for the routine use of successful experimental planning software within self-driving laboratories.
科研通智能强力驱动
Strongly Powered by AbleSci AI