Flow-Based Robust Watermarking with Invertible Noise Layer for Black-Box Distortions

稳健性(进化) 计算机科学 数字水印 编码器 嵌入 人工智能 算法 计算机视觉 图像(数学) 生物化学 基因 操作系统 化学
作者
Han Fang,Yupeng Qiu,Kejiang Chen,Jiyi Zhang,Weiming Zhang,Ee-Chien Chang
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:37 (4): 5054-5061 被引量:8
标识
DOI:10.1609/aaai.v37i4.25633
摘要

Deep learning-based digital watermarking frameworks have been widely studied recently. Most existing methods adopt an ``encoder-noise layer-decoder''-based architecture where the embedding and extraction processes are accomplished separately by the encoder and the decoder. However, one potential drawback of such a framework is that the encoder and the decoder may not be well coupled, resulting in the fact that the encoder may embed some redundant features into the host image thus influencing the invisibility and robustness of the whole algorithm. To address this limitation, this paper proposes a flow-based robust watermarking framework. The basic component of such framework is an invertible up-down-sampling neural block that can realize the embedding and extraction simultaneously. As a consequence, the encoded feature could keep high consistency with the feature that the decoder needed, which effectively avoids the embedding of redundant features. In addition, to ensure the robustness of black-box distortion, an invertible noise layer (INL) is designed to simulate the distortion and is served as a noise layer in the training stage. Benefiting from its reversibility, INL is also applied as a preprocessing before extraction to eliminate the distortion, which further improves the robustness of the algorithm. Extensive experiments demonstrate the superiority of the proposed framework in terms of visual quality and robustness. Compared with the state-of-the-art architecture, the visual quality (measured by PSNR) of the proposed framework improves by 2dB and the extraction accuracy after JPEG compression (QF=50) improves by more than 4%. Besides, the robustness against black-box distortions can be greatly achieved with more than 95% extraction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美的天空应助haowu采纳,获得30
2秒前
希望天下0贩的0完成签到,获得积分0
2秒前
ured发布了新的文献求助10
3秒前
科研废物完成签到 ,获得积分10
5秒前
戚戚发布了新的文献求助10
5秒前
田様应助pain豆先生采纳,获得30
9秒前
2587完成签到,获得积分10
9秒前
10秒前
小马甲应助牧妙芹采纳,获得10
10秒前
Mm完成签到,获得积分10
11秒前
king完成签到,获得积分10
13秒前
洁面乳发布了新的文献求助10
14秒前
asd发布了新的文献求助10
14秒前
16秒前
xiaobei发布了新的文献求助30
16秒前
奋斗的小熊猫完成签到 ,获得积分20
18秒前
18秒前
WCX关闭了WCX文献求助
18秒前
20秒前
ured发布了新的文献求助10
21秒前
穆紫应助liuHX采纳,获得10
21秒前
搜集达人应助fogsea采纳,获得10
22秒前
NexusExplorer应助洁面乳采纳,获得10
23秒前
白白白发布了新的文献求助10
23秒前
xiaobei完成签到,获得积分10
23秒前
笨笨的仙人掌完成签到,获得积分10
25秒前
25秒前
FashionBoy应助咕咕采纳,获得10
25秒前
25秒前
玖念完成签到,获得积分10
26秒前
脑洞疼应助xiaobei采纳,获得20
26秒前
27秒前
28秒前
28秒前
30秒前
甜蜜的阳光完成签到 ,获得积分10
30秒前
完美世界应助haowu采纳,获得10
30秒前
科研通AI2S应助haowu采纳,获得10
31秒前
科研通AI2S应助haowu采纳,获得10
31秒前
科研通AI2S应助haowu采纳,获得10
31秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124628
求助须知:如何正确求助?哪些是违规求助? 2774894
关于积分的说明 7724629
捐赠科研通 2430451
什么是DOI,文献DOI怎么找? 1291102
科研通“疑难数据库(出版商)”最低求助积分说明 622063
版权声明 600323