Flow-Based Robust Watermarking with Invertible Noise Layer for Black-Box Distortions

稳健性(进化) 计算机科学 数字水印 编码器 嵌入 人工智能 算法 计算机视觉 图像(数学) 生物化学 基因 操作系统 化学
作者
Han Fang,Yupeng Qiu,Kejiang Chen,Jiyi Zhang,Weiming Zhang,Ee‐Chien Chang
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:37 (4): 5054-5061 被引量:12
标识
DOI:10.1609/aaai.v37i4.25633
摘要

Deep learning-based digital watermarking frameworks have been widely studied recently. Most existing methods adopt an ``encoder-noise layer-decoder''-based architecture where the embedding and extraction processes are accomplished separately by the encoder and the decoder. However, one potential drawback of such a framework is that the encoder and the decoder may not be well coupled, resulting in the fact that the encoder may embed some redundant features into the host image thus influencing the invisibility and robustness of the whole algorithm. To address this limitation, this paper proposes a flow-based robust watermarking framework. The basic component of such framework is an invertible up-down-sampling neural block that can realize the embedding and extraction simultaneously. As a consequence, the encoded feature could keep high consistency with the feature that the decoder needed, which effectively avoids the embedding of redundant features. In addition, to ensure the robustness of black-box distortion, an invertible noise layer (INL) is designed to simulate the distortion and is served as a noise layer in the training stage. Benefiting from its reversibility, INL is also applied as a preprocessing before extraction to eliminate the distortion, which further improves the robustness of the algorithm. Extensive experiments demonstrate the superiority of the proposed framework in terms of visual quality and robustness. Compared with the state-of-the-art architecture, the visual quality (measured by PSNR) of the proposed framework improves by 2dB and the extraction accuracy after JPEG compression (QF=50) improves by more than 4%. Besides, the robustness against black-box distortions can be greatly achieved with more than 95% extraction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
紫菜发布了新的文献求助10
2秒前
6秒前
6秒前
独特亦旋完成签到,获得积分20
7秒前
今后应助qqqqqq采纳,获得10
8秒前
小马甲应助飞羽采纳,获得10
8秒前
星辰大海应助西内!卡Q因采纳,获得10
9秒前
9秒前
彬彬发布了新的文献求助10
10秒前
太叔捕完成签到,获得积分10
10秒前
高磊发布了新的文献求助10
11秒前
RH完成签到,获得积分10
11秒前
zhangzhen完成签到,获得积分10
11秒前
12秒前
科研通AI2S应助zfzf0422采纳,获得10
14秒前
Wendy1204发布了新的文献求助10
15秒前
15秒前
lydy1993完成签到,获得积分10
16秒前
17秒前
滴滴哒哒完成签到 ,获得积分10
17秒前
SciGPT应助波波玛奇朵采纳,获得10
19秒前
戏言121完成签到,获得积分10
19秒前
迷人的映雁完成签到,获得积分10
20秒前
20秒前
美丽的之双完成签到,获得积分10
21秒前
阿会完成签到,获得积分10
21秒前
wqm完成签到,获得积分10
22秒前
戏言121发布了新的文献求助10
23秒前
23秒前
24秒前
优雅的流沙完成签到 ,获得积分10
25秒前
猫的海完成签到,获得积分10
25秒前
25秒前
Eason Liu完成签到,获得积分0
26秒前
Wendy1204完成签到,获得积分20
26秒前
Hello应助654采纳,获得10
26秒前
咩咩羊完成签到,获得积分10
26秒前
30秒前
lianqing完成签到,获得积分10
30秒前
汉堡包应助科研通管家采纳,获得10
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824