SwinRDM: Integrate SwinRNN with Diffusion Model towards High-Resolution and High-Quality Weather Forecasting

杠杆(统计) 数值天气预报 位势高度 计算机科学 模型输出统计 计算 天气预报 气象学 环境科学 降水 算法 机器学习 地理
作者
Lei Chen,Du Fei,Yuan Hu,Zhibin Wang,Fan Wang
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:37 (1): 322-330 被引量:15
标识
DOI:10.1609/aaai.v37i1.25105
摘要

Data-driven medium-range weather forecasting has attracted much attention in recent years. However, the forecasting accuracy at high resolution is unsatisfactory currently. Pursuing high-resolution and high-quality weather forecasting, we develop a data-driven model SwinRDM which integrates an improved version of SwinRNN with a diffusion model. SwinRDM performs predictions at 0.25-degree resolution and achieves superior forecasting accuracy to IFS (Integrated Forecast System), the state-of-the-art operational NWP model, on representative atmospheric variables including 500 hPa geopotential (Z500), 850 hPa temperature (T850), 2-m temperature (T2M), and total precipitation (TP), at lead times of up to 5 days. We propose to leverage a two-step strategy to achieve high-resolution predictions at 0.25-degree considering the trade-off between computation memory and forecasting accuracy. Recurrent predictions for future atmospheric fields are firstly performed at 1.40625-degree resolution, and then a diffusion-based super-resolution model is leveraged to recover the high spatial resolution and finer-scale atmospheric details. SwinRDM pushes forward the performance and potential of data-driven models for a large margin towards operational applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
boluo发布了新的文献求助10
刚刚
打工dog发布了新的文献求助10
1秒前
科研小白菜完成签到,获得积分10
1秒前
1秒前
3秒前
Lucas应助Judy采纳,获得10
3秒前
3秒前
Abyxwz完成签到,获得积分10
3秒前
4秒前
聪慧的怀绿完成签到,获得积分10
5秒前
5秒前
lee完成签到 ,获得积分10
6秒前
7秒前
kiminonawa应助甜甜谷波采纳,获得10
7秒前
Abyxwz发布了新的文献求助10
7秒前
7秒前
8秒前
wly发布了新的文献求助10
8秒前
8秒前
9秒前
Una完成签到,获得积分10
9秒前
小野发布了新的文献求助10
9秒前
852应助艾可白采纳,获得10
10秒前
李爱国应助ST采纳,获得10
10秒前
酷波er应助哒哒哒采纳,获得10
11秒前
11秒前
GXWFDC完成签到 ,获得积分10
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
14秒前
虎啊虎啊发布了新的文献求助10
14秒前
14秒前
墨染完成签到 ,获得积分10
15秒前
15秒前
16秒前
浮游应助科研通管家采纳,获得10
16秒前
Return应助科研通管家采纳,获得10
16秒前
rebubu应助科研通管家采纳,获得10
16秒前
pluto应助科研通管家采纳,获得10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694141
求助须知:如何正确求助?哪些是违规求助? 5095906
关于积分的说明 15212994
捐赠科研通 4850815
什么是DOI,文献DOI怎么找? 2602009
邀请新用户注册赠送积分活动 1553827
关于科研通互助平台的介绍 1511800