Deep learning modeling in microscopy imaging: A review of materials science applications

显微镜 材料科学 计算机科学 人工智能 表征(材料科学) 纳米技术 光学 物理
作者
Marco Ragone,Reza Shahabazian-Yassar,Farzad Mashayek,Vitaliy Yurkiv
出处
期刊:Progress in Materials Science [Elsevier]
卷期号:138: 101165-101165 被引量:7
标识
DOI:10.1016/j.pmatsci.2023.101165
摘要

The accurate analysis of microscopy images representing various materials obtained in scanning probe microscopy, scanning tunneling microscopy, and transmission electron microscopy, is in general time consuming as it requires the inspection of multiple data bases for the correct interpretation of the observed crystal structures. This task is especially demanding in microscopy video analysis involving a vast amount of image data. The recent development of deep learning (DL) algorithms has paved the way for cutting-edge microscopy studies in materials science, often outperforming conventional image analysis methods. This paper reviews the state-of-the-art in DL-based synthetic data generation, materials structure identification, three-dimensional structural reconstruction, and physical properties evaluation for different types of microscopy images. First, the fundamental concepts of DL relevant to materials science applications are reviewed. Subsequently, the combined experimental measurements and numerical simulations for preparing dedicated microscopy image for DL analysis are discussed. Then, the review concentrates on the core topic of the paper, that is the critical assessment of DL advances in materials' structural and physical properties evaluation. We believe that the future development and deployment of DL for practical microscopy data analysis will rely on the progress and improvement of advanced algorithms and innovative methods for training data generation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助zxh采纳,获得10
刚刚
miko完成签到,获得积分10
刚刚
鳗鱼小小完成签到,获得积分10
1秒前
柑橘完成签到,获得积分10
1秒前
内永绘里完成签到,获得积分10
1秒前
2秒前
Sherlly完成签到,获得积分20
2秒前
111111完成签到,获得积分10
2秒前
crescendo完成签到,获得积分10
2秒前
深情安青应助yh采纳,获得10
3秒前
坦率的香烟完成签到,获得积分10
3秒前
我心飞扬发布了新的文献求助10
4秒前
共享精神应助郑州12138采纳,获得10
4秒前
Akim应助高贵的往事采纳,获得10
5秒前
xhs12138完成签到,获得积分10
5秒前
贰陆完成签到,获得积分10
6秒前
Jay完成签到,获得积分10
7秒前
8秒前
qawsed完成签到,获得积分10
8秒前
Migue应助wangjuncheng采纳,获得10
8秒前
8秒前
9秒前
慕青应助AAA采纳,获得10
10秒前
10秒前
我的心情愉悦完成签到,获得积分20
10秒前
10秒前
novia完成签到,获得积分10
10秒前
11秒前
1LDan发布了新的文献求助10
12秒前
二三三发布了新的文献求助10
13秒前
13秒前
知足肠乐完成签到,获得积分10
13秒前
云出发布了新的文献求助10
14秒前
health__up发布了新的文献求助10
14秒前
14秒前
兴奋棒球发布了新的文献求助10
15秒前
15秒前
芝士蛋糕完成签到 ,获得积分10
16秒前
愤怒的易云完成签到 ,获得积分10
16秒前
我心飞扬完成签到,获得积分10
16秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167746
求助须知:如何正确求助?哪些是违规求助? 2819117
关于积分的说明 7925260
捐赠科研通 2479015
什么是DOI,文献DOI怎么找? 1320596
科研通“疑难数据库(出版商)”最低求助积分说明 632856
版权声明 602443