A dual-branch joint learning network for underwater object detection

水下 对偶(语法数字) 接头(建筑物) 计算机科学 人工智能 对象(语法) 目标检测 计算机视觉 模式识别(心理学) 地质学 工程类 海洋学 建筑工程 艺术 文学类
作者
Bowen Wang,Zhi Wang,Wenhui Guo,Yanjiang Wang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:293: 111672-111672 被引量:30
标识
DOI:10.1016/j.knosys.2024.111672
摘要

Underwater object detection (UOD) is crucial for developing marine resources, environmental monitoring, and ecological protection. However, the degradation of underwater images limits the performance of object detectors. Most existing schemes treat underwater image enhancement (UIE) and UOD as two independent tasks, which take UIE as a preprocessing step to reduce the degradation problem, thus being unable to improve the detection accuracy effectively. Therefore, in this paper, we propose a dual-branch joint learning network (DJL-Net) that combines image processing and object detection through multi-task joint learning to construct an end-to-end model for underwater detection. With the dual-branch structure, DJL-Net can use the enhanced images generated by the image-processing module to supplement the features lost due to the degradation of the original underwater images. Specifically, DJL-Net first employs an image decolorization module governed by the detection loss, generating gray images to eliminate color disturbances stemming from underwater light absorption and scattering effects. An improved edge enhancement module is utilized to enhance the shape and texture expression in gray images and improve the recognition of object boundary features. Then, the generated edge-enhanced gray images and their original underwater images are input into the two branches to learn different types of features. Finally, a tridimensional adaptive gated feature fusion module is proposed to effectively fuse the complementary features learned from the two branches. Comprehensive experiments on four UOD datasets, including some scenes with challenging underwater environments, demonstrate the effectiveness and robustness of the proposed DJL-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘿嘿关注了科研通微信公众号
刚刚
科研通AI2S应助蚝油盗梨采纳,获得10
刚刚
李耀京发布了新的文献求助30
刚刚
刚刚
RJ发布了新的文献求助10
1秒前
1秒前
百地希留耶完成签到 ,获得积分10
1秒前
1秒前
1秒前
小蘑菇应助taff采纳,获得10
2秒前
恋恋青葡萄完成签到,获得积分10
2秒前
2秒前
Yuu发布了新的文献求助10
2秒前
2秒前
3秒前
周小夭完成签到,获得积分10
3秒前
天真的皓轩完成签到,获得积分10
3秒前
隐形曼青应助残剑月采纳,获得10
3秒前
4秒前
勇敢发布了新的文献求助10
4秒前
傅宛白发布了新的文献求助10
4秒前
Shark完成签到,获得积分20
4秒前
5秒前
5秒前
5秒前
爆米花应助myq采纳,获得10
6秒前
Jasper应助优雅的冷卉采纳,获得10
7秒前
7秒前
谢大喵发布了新的文献求助10
7秒前
斯文败类应助Zyxx采纳,获得10
7秒前
evelyn发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
罗柠七发布了新的文献求助20
8秒前
语物完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
领导范儿应助方旋采纳,获得10
9秒前
等待戈多完成签到,获得积分10
10秒前
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233