A dual-branch joint learning network for underwater object detection

水下 对偶(语法数字) 接头(建筑物) 计算机科学 人工智能 对象(语法) 目标检测 计算机视觉 模式识别(心理学) 地质学 工程类 海洋学 建筑工程 艺术 文学类
作者
Bowen Wang,Zhi Wang,Wenhui Guo,Yanjiang Wang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:293: 111672-111672 被引量:4
标识
DOI:10.1016/j.knosys.2024.111672
摘要

Underwater object detection (UOD) is crucial for developing marine resources, environmental monitoring, and ecological protection. However, the degradation of underwater images limits the performance of object detectors. Most existing schemes treat underwater image enhancement (UIE) and UOD as two independent tasks, which take UIE as a preprocessing step to reduce the degradation problem, thus being unable to improve the detection accuracy effectively. Therefore, in this paper, we propose a dual-branch joint learning network (DJL-Net) that combines image processing and object detection through multi-task joint learning to construct an end-to-end model for underwater detection. With the dual-branch structure, DJL-Net can use the enhanced images generated by the image-processing module to supplement the features lost due to the degradation of the original underwater images. Specifically, DJL-Net first employs an image decolorization module governed by the detection loss, generating gray images to eliminate color disturbances stemming from underwater light absorption and scattering effects. An improved edge enhancement module is utilized to enhance the shape and texture expression in gray images and improve the recognition of object boundary features. Then, the generated edge-enhanced gray images and their original underwater images are input into the two branches to learn different types of features. Finally, a tridimensional adaptive gated feature fusion module is proposed to effectively fuse the complementary features learned from the two branches. Comprehensive experiments on four UOD datasets, including some scenes with challenging underwater environments, demonstrate the effectiveness and robustness of the proposed DJL-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研狗发布了新的文献求助20
1秒前
2秒前
2秒前
jarenthar完成签到 ,获得积分10
2秒前
2秒前
丘比特应助hata采纳,获得10
2秒前
顾矜应助lszhw采纳,获得10
3秒前
lqq完成签到 ,获得积分10
3秒前
3秒前
共享精神应助拟拟采纳,获得10
3秒前
3秒前
lhy12345完成签到,获得积分10
3秒前
非常可爱发布了新的文献求助20
4秒前
4秒前
4秒前
4秒前
科研民工发布了新的文献求助10
5秒前
文艺的初蓝完成签到 ,获得积分10
5秒前
TiAmo发布了新的文献求助10
5秒前
刘十三完成签到,获得积分10
5秒前
5秒前
犹豫忆南完成签到,获得积分10
6秒前
科研通AI5应助kingwhitewing采纳,获得10
7秒前
7秒前
mm关注了科研通微信公众号
7秒前
xieyuanxing发布了新的文献求助10
7秒前
7秒前
左然然完成签到,获得积分10
7秒前
7秒前
人福药业完成签到,获得积分10
8秒前
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
细腻晓露发布了新的文献求助10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
8秒前
三里墩头应助科研通管家采纳,获得10
8秒前
天线宝宝应助科研通管家采纳,获得10
8秒前
wing00024完成签到,获得积分10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740