All-atom protein sequence design based on geometric deep learning

序列(生物学) 蛋白质设计 深度学习 人工智能 计算机科学 化学 蛋白质结构 生物化学
作者
Jiale Liu,Zheng Guo,Changsheng Zhang,Luhua Lai
标识
DOI:10.1101/2024.03.18.585651
摘要

Abstract The development of advanced deep learning methods has revolutionized computational protein design. Although the success rate of design has been significantly increased, the overall accuracy of de novo design remains low. Many computational sequence design approaches are devoted to recover the original sequences for given protein structures by encoding the environment of the central residue without considering atomic details of side chains. This may limit the exploration of new sequences that can fold into the same structure and restrain function design that depends on interaction details. In this study, we proposed a novel deep learning frame-work, GeoSeqBuilder, to learn the relationship between protein structure and sequence based on rotational and translational invariance by extracting the information from relative locations. We utilized geometric deep learning to fetch the spatial local geometric features from protein backbones and explicitly incorporated three-body interactions to learn the inter-residue coupling information, and then determined the central residue type. Our model recovers over 50% native residue types and simultaneously gives highly accurate prediction of side-chain conformations which gives the atomic interaction details and circumvents the dependence of protein structure prediction tools. We used the likelihood confidence log P as scoring function for sequence and structure consistence evaluation which exhibits strong correlation with TM-score, and can be applied to recognize near-native structures from protein decoys pool in protein structure prediction. We have used GeoSeqBuilder to design sequences for two proteins, including thiore-doxin and a de novo hallucinated protein. All of the 15 sequences experimentally tested can be expressed as soluble monomeric proteins with high thermal stability and correct secondary structures. We further solved one crystal structure for thioredoxin and two for the hallucinated structure and all the experimentally solved structures are in good agreement with the designed models. The two designed sequences for the hallucination structure are novel without any homologous sequences within the latest released database clust30. The ability of GeoSeqBuilder to design new sequences for given protein structures with atomic details makes it applicable, not only for de novo sequence design, but also for protein-protein interaction and functional protein design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
JamesPei应助ljn0406采纳,获得10
1秒前
cgsu完成签到,获得积分10
1秒前
赘婿应助吕易巧采纳,获得10
2秒前
研友_X89o6n发布了新的文献求助30
3秒前
4秒前
星辰大海应助limeOrca采纳,获得10
4秒前
6秒前
cappuccino完成签到 ,获得积分10
6秒前
6秒前
KONGBAI完成签到,获得积分10
6秒前
刘洋完成签到,获得积分10
6秒前
8秒前
8秒前
烟花应助科研通管家采纳,获得30
8秒前
8秒前
8秒前
烟花应助科研通管家采纳,获得10
8秒前
冷静的方盒完成签到,获得积分10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
千跃应助科研通管家采纳,获得10
8秒前
科目三应助科研通管家采纳,获得10
8秒前
9秒前
9秒前
猪猪hero应助科研通管家采纳,获得10
9秒前
猪猪hero应助科研通管家采纳,获得10
9秒前
小十七果发布了新的文献求助10
9秒前
猪猪hero应助科研通管家采纳,获得10
9秒前
猪猪hero应助科研通管家采纳,获得10
9秒前
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
猪猪hero应助科研通管家采纳,获得10
9秒前
9秒前
情怀应助科研通管家采纳,获得10
9秒前
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
Fengliguantou完成签到,获得积分10
9秒前
在水一方应助噜啦噜啦采纳,获得10
10秒前
qzy发布了新的文献求助10
10秒前
kushdw发布了新的文献求助10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959455
求助须知:如何正确求助?哪些是违规求助? 3505634
关于积分的说明 11125092
捐赠科研通 3237449
什么是DOI,文献DOI怎么找? 1789148
邀请新用户注册赠送积分活动 871583
科研通“疑难数据库(出版商)”最低求助积分说明 802858