已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

All-atom protein sequence design based on geometric deep learning

序列(生物学) 蛋白质设计 深度学习 人工智能 计算机科学 化学 蛋白质结构 生物化学
作者
Jiale Liu,Zheng Guo,Changsheng Zhang,Luhua Lai
标识
DOI:10.1101/2024.03.18.585651
摘要

Abstract The development of advanced deep learning methods has revolutionized computational protein design. Although the success rate of design has been significantly increased, the overall accuracy of de novo design remains low. Many computational sequence design approaches are devoted to recover the original sequences for given protein structures by encoding the environment of the central residue without considering atomic details of side chains. This may limit the exploration of new sequences that can fold into the same structure and restrain function design that depends on interaction details. In this study, we proposed a novel deep learning frame-work, GeoSeqBuilder, to learn the relationship between protein structure and sequence based on rotational and translational invariance by extracting the information from relative locations. We utilized geometric deep learning to fetch the spatial local geometric features from protein backbones and explicitly incorporated three-body interactions to learn the inter-residue coupling information, and then determined the central residue type. Our model recovers over 50% native residue types and simultaneously gives highly accurate prediction of side-chain conformations which gives the atomic interaction details and circumvents the dependence of protein structure prediction tools. We used the likelihood confidence log P as scoring function for sequence and structure consistence evaluation which exhibits strong correlation with TM-score, and can be applied to recognize near-native structures from protein decoys pool in protein structure prediction. We have used GeoSeqBuilder to design sequences for two proteins, including thiore-doxin and a de novo hallucinated protein. All of the 15 sequences experimentally tested can be expressed as soluble monomeric proteins with high thermal stability and correct secondary structures. We further solved one crystal structure for thioredoxin and two for the hallucinated structure and all the experimentally solved structures are in good agreement with the designed models. The two designed sequences for the hallucination structure are novel without any homologous sequences within the latest released database clust30. The ability of GeoSeqBuilder to design new sequences for given protein structures with atomic details makes it applicable, not only for de novo sequence design, but also for protein-protein interaction and functional protein design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
杨乃彬完成签到,获得积分10
2秒前
Huang完成签到,获得积分10
2秒前
6秒前
绾妤完成签到 ,获得积分10
6秒前
立军发布了新的文献求助10
7秒前
鹰隼游完成签到 ,获得积分10
8秒前
12秒前
CCD完成签到 ,获得积分10
12秒前
ryanfeng完成签到,获得积分10
12秒前
丫丫完成签到 ,获得积分10
14秒前
上官若男应助Leslie采纳,获得30
15秒前
圆圆完成签到 ,获得积分10
16秒前
16秒前
今我来思完成签到 ,获得积分10
17秒前
oweing发布了新的文献求助30
17秒前
17秒前
23秒前
小太阳完成签到 ,获得积分10
24秒前
1111111完成签到,获得积分20
24秒前
24秒前
Anna完成签到 ,获得积分10
25秒前
金灶沐完成签到 ,获得积分10
25秒前
立军完成签到,获得积分10
28秒前
快乐的慕灵完成签到 ,获得积分10
28秒前
31秒前
gggghhhh发布了新的文献求助10
34秒前
莫遥完成签到 ,获得积分10
36秒前
整齐的惮完成签到 ,获得积分10
36秒前
九日橙完成签到 ,获得积分10
41秒前
41秒前
45秒前
wisher完成签到,获得积分10
46秒前
小凯完成签到 ,获得积分10
46秒前
小草三心完成签到 ,获得积分10
47秒前
Leslie发布了新的文献求助30
48秒前
张元东完成签到 ,获得积分10
48秒前
czy完成签到 ,获得积分10
49秒前
星星完成签到 ,获得积分10
49秒前
小张完成签到 ,获得积分10
51秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150395
求助须知:如何正确求助?哪些是违规求助? 2801716
关于积分的说明 7845638
捐赠科研通 2459139
什么是DOI,文献DOI怎么找? 1309085
科研通“疑难数据库(出版商)”最低求助积分说明 628634
版权声明 601727