亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

All-atom protein sequence design based on geometric deep learning

序列(生物学) 蛋白质设计 深度学习 人工智能 计算机科学 化学 蛋白质结构 生物化学
作者
Jiale Liu,Zheng Guo,Changsheng Zhang,Luhua Lai
标识
DOI:10.1101/2024.03.18.585651
摘要

Abstract The development of advanced deep learning methods has revolutionized computational protein design. Although the success rate of design has been significantly increased, the overall accuracy of de novo design remains low. Many computational sequence design approaches are devoted to recover the original sequences for given protein structures by encoding the environment of the central residue without considering atomic details of side chains. This may limit the exploration of new sequences that can fold into the same structure and restrain function design that depends on interaction details. In this study, we proposed a novel deep learning frame-work, GeoSeqBuilder, to learn the relationship between protein structure and sequence based on rotational and translational invariance by extracting the information from relative locations. We utilized geometric deep learning to fetch the spatial local geometric features from protein backbones and explicitly incorporated three-body interactions to learn the inter-residue coupling information, and then determined the central residue type. Our model recovers over 50% native residue types and simultaneously gives highly accurate prediction of side-chain conformations which gives the atomic interaction details and circumvents the dependence of protein structure prediction tools. We used the likelihood confidence log P as scoring function for sequence and structure consistence evaluation which exhibits strong correlation with TM-score, and can be applied to recognize near-native structures from protein decoys pool in protein structure prediction. We have used GeoSeqBuilder to design sequences for two proteins, including thiore-doxin and a de novo hallucinated protein. All of the 15 sequences experimentally tested can be expressed as soluble monomeric proteins with high thermal stability and correct secondary structures. We further solved one crystal structure for thioredoxin and two for the hallucinated structure and all the experimentally solved structures are in good agreement with the designed models. The two designed sequences for the hallucination structure are novel without any homologous sequences within the latest released database clust30. The ability of GeoSeqBuilder to design new sequences for given protein structures with atomic details makes it applicable, not only for de novo sequence design, but also for protein-protein interaction and functional protein design.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
鱼鱼完成签到 ,获得积分10
8秒前
TingtingGZ发布了新的文献求助10
8秒前
8秒前
ziguangrong发布了新的文献求助10
12秒前
白潇潇完成签到 ,获得积分10
14秒前
15秒前
努力搞科研完成签到,获得积分10
16秒前
20秒前
鹿芗泽发布了新的文献求助10
23秒前
敬业乐群完成签到,获得积分10
23秒前
mumu完成签到,获得积分10
25秒前
月关完成签到 ,获得积分10
30秒前
晚街听风完成签到 ,获得积分10
39秒前
繁星背后完成签到 ,获得积分10
41秒前
42秒前
柠檬树发布了新的文献求助10
45秒前
无花果应助刘言采纳,获得10
52秒前
坚强觅珍完成签到 ,获得积分10
1分钟前
1分钟前
Lan完成签到 ,获得积分10
1分钟前
欣慰小蕊完成签到,获得积分10
1分钟前
CHORHIN发布了新的文献求助10
1分钟前
Alpha完成签到 ,获得积分10
1分钟前
1分钟前
刘言发布了新的文献求助10
1分钟前
宝贝完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
zzy发布了新的文献求助10
1分钟前
ll发布了新的文献求助10
1分钟前
1分钟前
1分钟前
CodeCraft应助madoudou采纳,获得10
1分钟前
刘言完成签到,获得积分20
1分钟前
1分钟前
守一完成签到,获得积分10
1分钟前
Nick_YFWS完成签到,获得积分10
1分钟前
无花果应助榴莲柿子茶采纳,获得10
1分钟前
CHORHIN完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458817
求助须知:如何正确求助?哪些是违规求助? 4564825
关于积分的说明 14296985
捐赠科研通 4489857
什么是DOI,文献DOI怎么找? 2459372
邀请新用户注册赠送积分活动 1449054
关于科研通互助平台的介绍 1424535