已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Knowledge-aware fine-grained attention networks with refined knowledge graph embedding for personalized recommendation

计算机科学 知识图 嵌入 图形 特征学习 可扩展性 机器学习 推荐系统 人工智能 情报检索 理论计算机科学 数据库
作者
Wei Wang,Xiaoxuan Shen,Baolin Yi,Huanyu Zhang,Jianfang Liu,Chao Dai
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123710-123710 被引量:40
标识
DOI:10.1016/j.eswa.2024.123710
摘要

Recommendation systems aim to provide users with personalized and accurate services by integrating various machine learning technologies. Suffering from the puzzles such as cold-start and data sparsity, recommendation models has received extensive attention by incorporating knowledge graphs as additional supplementary information to effectively solve these problems. More recently, graph neural networks (GNNs) have been adopted to establish knowledge-aware recommendation models and made considerable achievements. Nevertheless, the existing GNN-based approaches are inadequate in the following two aspects: (1) How to achieve sufficient high-order collaborative signals? (2) How to reduce the impact of redundant KG information on representation? To overcome these limitations, we propose a novel framework KFGAN with Knowledge-aware Fine-grained Attention Networks for personalized knowledge-aware recommendation, which captures user's preferences by encoding the relation paths and associated entities and generates refined knowledge graphs to learn the potential semantic information. Specifically, by integrating the high-order collaborative signals of users and items and the structural information of knowledge graph, KFGAN enriches the feature representation of users and items and realizes the consistency and coherence of CF and KG information. Furthermore, KFGAN draws a lesson from graph contrastive learning approach to accomplish refined knowledge graph embedding, which alleviates the interference of redundant KG signal to the model and mines the latent semantic information in KG. Massive experimental results on three benchmark datasets prove that KFGAN model dramatically outperforms the current state-of-the-art baselines. The code and experimental datasets will be available at https://github.com/weiwang1992/KFGAN to verify and study for further research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助承乐采纳,获得10
刚刚
追寻的烤鸡完成签到,获得积分10
1秒前
请叫我表情帝完成签到 ,获得积分10
2秒前
科目三应助黄昏12123采纳,获得200
3秒前
sophia021012发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
kingbin完成签到,获得积分10
5秒前
搜集达人应助花楹采纳,获得10
6秒前
Fancy应助DreamMaker采纳,获得20
7秒前
8秒前
9秒前
ontheway发布了新的文献求助10
10秒前
11秒前
完美世界应助Lu采纳,获得10
11秒前
Taxwitted完成签到 ,获得积分10
12秒前
任性的外套完成签到 ,获得积分10
12秒前
Cynn发布了新的文献求助10
12秒前
野葱发布了新的文献求助10
12秒前
Shelley发布了新的文献求助10
15秒前
pluto应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
16秒前
pluto应助科研通管家采纳,获得10
16秒前
华仔应助科研通管家采纳,获得10
16秒前
pluto应助科研通管家采纳,获得10
16秒前
搜集达人应助科研通管家采纳,获得10
16秒前
pluto应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
JamesPei应助科研通管家采纳,获得10
17秒前
pluto应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
pluto应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
华仔应助科研通管家采纳,获得10
17秒前
pluto应助科研通管家采纳,获得10
17秒前
pluto应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5763203
求助须知:如何正确求助?哪些是违规求助? 5539414
关于积分的说明 15404436
捐赠科研通 4899064
什么是DOI,文献DOI怎么找? 2635276
邀请新用户注册赠送积分活动 1583372
关于科研通互助平台的介绍 1538497