已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Knowledge-aware fine-grained attention networks with refined knowledge graph embedding for personalized recommendation

计算机科学 知识图 嵌入 图形 特征学习 可扩展性 机器学习 推荐系统 人工智能 情报检索 理论计算机科学 数据库
作者
Wei Wang,Xiaoxuan Shen,Baolin Yi,Huanyu Zhang,Jianfang Liu,Chao Dai
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:249: 123710-123710 被引量:20
标识
DOI:10.1016/j.eswa.2024.123710
摘要

Recommendation systems aim to provide users with personalized and accurate services by integrating various machine learning technologies. Suffering from the puzzles such as cold-start and data sparsity, recommendation models has received extensive attention by incorporating knowledge graphs as additional supplementary information to effectively solve these problems. More recently, graph neural networks (GNNs) have been adopted to establish knowledge-aware recommendation models and made considerable achievements. Nevertheless, the existing GNN-based approaches are inadequate in the following two aspects: (1) How to achieve sufficient high-order collaborative signals? (2) How to reduce the impact of redundant KG information on representation? To overcome these limitations, we propose a novel framework KFGAN with Knowledge-aware Fine-grained Attention Networks for personalized knowledge-aware recommendation, which captures user's preferences by encoding the relation paths and associated entities and generates refined knowledge graphs to learn the potential semantic information. Specifically, by integrating the high-order collaborative signals of users and items and the structural information of knowledge graph, KFGAN enriches the feature representation of users and items and realizes the consistency and coherence of CF and KG information. Furthermore, KFGAN draws a lesson from graph contrastive learning approach to accomplish refined knowledge graph embedding, which alleviates the interference of redundant KG signal to the model and mines the latent semantic information in KG. Massive experimental results on three benchmark datasets prove that KFGAN model dramatically outperforms the current state-of-the-art baselines. The code and experimental datasets will be available at https://github.com/weiwang1992/KFGAN to verify and study for further research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
赘婿应助陈静采纳,获得10
3秒前
科研通AI6应助老实新筠采纳,获得10
5秒前
icewcq关注了科研通微信公众号
5秒前
5秒前
古夕发布了新的文献求助10
6秒前
会笑的蜗牛完成签到,获得积分10
6秒前
英姑应助probiotics采纳,获得30
7秒前
9秒前
11秒前
11秒前
12秒前
12秒前
13秒前
从容芮举报northisland求助涉嫌违规
15秒前
15秒前
橘子橙发布了新的文献求助10
16秒前
小怪兽完成签到 ,获得积分10
16秒前
wanci应助淳于寻冬采纳,获得10
16秒前
16秒前
orixero应助JokerC采纳,获得10
17秒前
小恐龙发布了新的文献求助10
17秒前
孙泉发布了新的文献求助10
17秒前
王子瑞完成签到 ,获得积分10
19秒前
陈静发布了新的文献求助10
19秒前
19秒前
19秒前
19秒前
19秒前
19秒前
21秒前
21秒前
gqkfw发布了新的文献求助10
21秒前
22秒前
icewcq发布了新的文献求助10
23秒前
浮游应助爱听歌酸奶采纳,获得10
23秒前
思源应助孙泉采纳,获得10
23秒前
占稚晴完成签到,获得积分10
24秒前
24秒前
老谢发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4908965
求助须知:如何正确求助?哪些是违规求助? 4185518
关于积分的说明 12997876
捐赠科研通 3952390
什么是DOI,文献DOI怎么找? 2167485
邀请新用户注册赠送积分活动 1185981
关于科研通互助平台的介绍 1092501