Knowledge-aware fine-grained attention networks with refined knowledge graph embedding for personalized recommendation

计算机科学 知识图 嵌入 图形 特征学习 可扩展性 机器学习 推荐系统 人工智能 情报检索 理论计算机科学 数据库
作者
Wei Wang,Xiaoxuan Shen,Baolin Yi,Huanyu Zhang,Jianfang Liu,Chao Dai
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123710-123710 被引量:27
标识
DOI:10.1016/j.eswa.2024.123710
摘要

Recommendation systems aim to provide users with personalized and accurate services by integrating various machine learning technologies. Suffering from the puzzles such as cold-start and data sparsity, recommendation models has received extensive attention by incorporating knowledge graphs as additional supplementary information to effectively solve these problems. More recently, graph neural networks (GNNs) have been adopted to establish knowledge-aware recommendation models and made considerable achievements. Nevertheless, the existing GNN-based approaches are inadequate in the following two aspects: (1) How to achieve sufficient high-order collaborative signals? (2) How to reduce the impact of redundant KG information on representation? To overcome these limitations, we propose a novel framework KFGAN with Knowledge-aware Fine-grained Attention Networks for personalized knowledge-aware recommendation, which captures user's preferences by encoding the relation paths and associated entities and generates refined knowledge graphs to learn the potential semantic information. Specifically, by integrating the high-order collaborative signals of users and items and the structural information of knowledge graph, KFGAN enriches the feature representation of users and items and realizes the consistency and coherence of CF and KG information. Furthermore, KFGAN draws a lesson from graph contrastive learning approach to accomplish refined knowledge graph embedding, which alleviates the interference of redundant KG signal to the model and mines the latent semantic information in KG. Massive experimental results on three benchmark datasets prove that KFGAN model dramatically outperforms the current state-of-the-art baselines. The code and experimental datasets will be available at https://github.com/weiwang1992/KFGAN to verify and study for further research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
渤大小mn发布了新的文献求助10
刚刚
1秒前
1秒前
starrism发布了新的文献求助10
1秒前
隐形曼青应助谦让的含海采纳,获得10
1秒前
沐沐完成签到,获得积分10
1秒前
云溪发布了新的文献求助10
2秒前
Dimples完成签到,获得积分10
2秒前
2秒前
dong发布了新的文献求助10
2秒前
今后应助老毛采纳,获得10
2秒前
3秒前
cuicy完成签到,获得积分10
3秒前
hdbys完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
可靠的西牛关注了科研通微信公众号
4秒前
万能图书馆应助sss采纳,获得10
4秒前
张英歌发布了新的文献求助10
5秒前
算命先生完成签到,获得积分10
5秒前
可爱的函函应助王女士采纳,获得10
5秒前
nannan发布了新的文献求助10
5秒前
5秒前
Ellen完成签到,获得积分10
6秒前
善学以致用应助fun采纳,获得10
6秒前
科研通AI6应助鳗鱼觅珍采纳,获得30
6秒前
Hello应助夏安采纳,获得10
6秒前
yeoyoo驳回了mono应助
6秒前
123完成签到,获得积分20
6秒前
7秒前
张肥肥发布了新的文献求助10
7秒前
7秒前
cuicy发布了新的文献求助10
7秒前
7秒前
领导范儿应助脱贫攻坚采纳,获得10
8秒前
科研通AI6应助钱钱采纳,获得10
8秒前
端庄沉鱼发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625453
求助须知:如何正确求助?哪些是违规求助? 4711271
关于积分的说明 14954468
捐赠科研通 4779371
什么是DOI,文献DOI怎么找? 2553732
邀请新用户注册赠送积分活动 1515665
关于科研通互助平台的介绍 1475853