已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Knowledge-aware fine-grained attention networks with refined knowledge graph embedding for personalized recommendation

计算机科学 知识图 嵌入 图形 特征学习 可扩展性 机器学习 推荐系统 人工智能 情报检索 理论计算机科学 数据库
作者
Wei Wang,Xiaoxuan Shen,Baolin Yi,Huanyu Zhang,Jianfang Liu,Chao Dai
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:249: 123710-123710 被引量:18
标识
DOI:10.1016/j.eswa.2024.123710
摘要

Recommendation systems aim to provide users with personalized and accurate services by integrating various machine learning technologies. Suffering from the puzzles such as cold-start and data sparsity, recommendation models has received extensive attention by incorporating knowledge graphs as additional supplementary information to effectively solve these problems. More recently, graph neural networks (GNNs) have been adopted to establish knowledge-aware recommendation models and made considerable achievements. Nevertheless, the existing GNN-based approaches are inadequate in the following two aspects: (1) How to achieve sufficient high-order collaborative signals? (2) How to reduce the impact of redundant KG information on representation? To overcome these limitations, we propose a novel framework KFGAN with Knowledge-aware Fine-grained Attention Networks for personalized knowledge-aware recommendation, which captures user's preferences by encoding the relation paths and associated entities and generates refined knowledge graphs to learn the potential semantic information. Specifically, by integrating the high-order collaborative signals of users and items and the structural information of knowledge graph, KFGAN enriches the feature representation of users and items and realizes the consistency and coherence of CF and KG information. Furthermore, KFGAN draws a lesson from graph contrastive learning approach to accomplish refined knowledge graph embedding, which alleviates the interference of redundant KG signal to the model and mines the latent semantic information in KG. Massive experimental results on three benchmark datasets prove that KFGAN model dramatically outperforms the current state-of-the-art baselines. The code and experimental datasets will be available at https://github.com/weiwang1992/KFGAN to verify and study for further research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cosmosurfer完成签到,获得积分10
10秒前
zoe发布了新的文献求助10
11秒前
万能图书馆应助kktsy采纳,获得10
13秒前
可爱的函函应助橘栀采纳,获得10
16秒前
17秒前
菜根谭完成签到 ,获得积分10
19秒前
深情安青应助ah采纳,获得10
19秒前
科研通AI2S应助芜湖采纳,获得10
19秒前
21秒前
22秒前
22秒前
23秒前
孤独箴言发布了新的文献求助10
26秒前
zoe发布了新的文献求助10
27秒前
kktsy发布了新的文献求助10
27秒前
29秒前
欣慰问凝发布了新的文献求助10
29秒前
Radiant发布了新的文献求助10
34秒前
34秒前
cyanpomelo完成签到,获得积分10
35秒前
sl完成签到 ,获得积分10
39秒前
英姑应助孤独箴言采纳,获得30
44秒前
51秒前
欣慰问凝完成签到 ,获得积分10
53秒前
HarryYang完成签到 ,获得积分10
55秒前
李健应助燃烧的小火苗采纳,获得30
57秒前
桃李不言发布了新的文献求助10
57秒前
搜集达人应助琳琳采纳,获得10
58秒前
Ammr完成签到 ,获得积分10
59秒前
无极完成签到 ,获得积分10
1分钟前
涛老三完成签到 ,获得积分10
1分钟前
LLLL发布了新的文献求助10
1分钟前
1分钟前
kktsy完成签到,获得积分10
1分钟前
朴素的迎天关注了科研通微信公众号
1分钟前
doctor2023完成签到,获得积分10
1分钟前
1分钟前
1分钟前
慢慢完成签到 ,获得积分10
1分钟前
HoraDorathy发布了新的文献求助10
1分钟前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3963148
求助须知:如何正确求助?哪些是违规求助? 3509019
关于积分的说明 11144868
捐赠科研通 3242023
什么是DOI,文献DOI怎么找? 1791708
邀请新用户注册赠送积分活动 873118
科研通“疑难数据库(出版商)”最低求助积分说明 803621