Knowledge-aware fine-grained attention networks with refined knowledge graph embedding for personalized recommendation

计算机科学 知识图 嵌入 图形 特征学习 可扩展性 机器学习 推荐系统 人工智能 情报检索 理论计算机科学 数据库
作者
Wei Wang,Xiaoxuan Shen,Baolin Yi,Huanyu Zhang,Jianfang Liu,Chao Dai
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123710-123710 被引量:27
标识
DOI:10.1016/j.eswa.2024.123710
摘要

Recommendation systems aim to provide users with personalized and accurate services by integrating various machine learning technologies. Suffering from the puzzles such as cold-start and data sparsity, recommendation models has received extensive attention by incorporating knowledge graphs as additional supplementary information to effectively solve these problems. More recently, graph neural networks (GNNs) have been adopted to establish knowledge-aware recommendation models and made considerable achievements. Nevertheless, the existing GNN-based approaches are inadequate in the following two aspects: (1) How to achieve sufficient high-order collaborative signals? (2) How to reduce the impact of redundant KG information on representation? To overcome these limitations, we propose a novel framework KFGAN with Knowledge-aware Fine-grained Attention Networks for personalized knowledge-aware recommendation, which captures user's preferences by encoding the relation paths and associated entities and generates refined knowledge graphs to learn the potential semantic information. Specifically, by integrating the high-order collaborative signals of users and items and the structural information of knowledge graph, KFGAN enriches the feature representation of users and items and realizes the consistency and coherence of CF and KG information. Furthermore, KFGAN draws a lesson from graph contrastive learning approach to accomplish refined knowledge graph embedding, which alleviates the interference of redundant KG signal to the model and mines the latent semantic information in KG. Massive experimental results on three benchmark datasets prove that KFGAN model dramatically outperforms the current state-of-the-art baselines. The code and experimental datasets will be available at https://github.com/weiwang1992/KFGAN to verify and study for further research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助一二采纳,获得10
刚刚
1秒前
1秒前
一个句号发布了新的文献求助10
2秒前
Chii完成签到,获得积分10
2秒前
孙冬晨完成签到,获得积分10
2秒前
暗无圣龙王完成签到,获得积分10
2秒前
3秒前
大个应助ldd采纳,获得10
3秒前
J_Man发布了新的文献求助10
3秒前
白菜完成签到,获得积分10
3秒前
MAC7完成签到,获得积分10
6秒前
枫原万叶发布了新的文献求助10
6秒前
lixm完成签到,获得积分10
6秒前
yayisheng关注了科研通微信公众号
6秒前
乐乐完成签到,获得积分10
7秒前
刘丰铭发布了新的文献求助10
7秒前
无极微光应助合适的芸遥采纳,获得20
8秒前
9秒前
小马牙牙发布了新的文献求助10
9秒前
yayisheng关注了科研通微信公众号
10秒前
甜甜灵槐完成签到 ,获得积分10
10秒前
11秒前
在水一方应助莫羽倾尘采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
王梦如发布了新的文献求助10
13秒前
许峰完成签到,获得积分10
13秒前
13秒前
我也会吃饭完成签到,获得积分10
13秒前
14秒前
14秒前
15秒前
滴歪歪发布了新的文献求助10
16秒前
16秒前
科研通AI6应助esdeath采纳,获得10
17秒前
17秒前
17秒前
FashionBoy应助帅帅哈采纳,获得10
18秒前
18秒前
小马牙牙完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610029
求助须知:如何正确求助?哪些是违规求助? 4694550
关于积分的说明 14882989
捐赠科研通 4720934
什么是DOI,文献DOI怎么找? 2544990
邀请新用户注册赠送积分活动 1509848
关于科研通互助平台的介绍 1473013