Knowledge-aware fine-grained attention networks with refined knowledge graph embedding for personalized recommendation

计算机科学 知识图 嵌入 图形 特征学习 可扩展性 机器学习 推荐系统 人工智能 情报检索 理论计算机科学 数据库
作者
Wei Wang,Xiaoxuan Shen,Baolin Yi,Huanyu Zhang,Jianfang Liu,Chao Dai
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123710-123710 被引量:27
标识
DOI:10.1016/j.eswa.2024.123710
摘要

Recommendation systems aim to provide users with personalized and accurate services by integrating various machine learning technologies. Suffering from the puzzles such as cold-start and data sparsity, recommendation models has received extensive attention by incorporating knowledge graphs as additional supplementary information to effectively solve these problems. More recently, graph neural networks (GNNs) have been adopted to establish knowledge-aware recommendation models and made considerable achievements. Nevertheless, the existing GNN-based approaches are inadequate in the following two aspects: (1) How to achieve sufficient high-order collaborative signals? (2) How to reduce the impact of redundant KG information on representation? To overcome these limitations, we propose a novel framework KFGAN with Knowledge-aware Fine-grained Attention Networks for personalized knowledge-aware recommendation, which captures user's preferences by encoding the relation paths and associated entities and generates refined knowledge graphs to learn the potential semantic information. Specifically, by integrating the high-order collaborative signals of users and items and the structural information of knowledge graph, KFGAN enriches the feature representation of users and items and realizes the consistency and coherence of CF and KG information. Furthermore, KFGAN draws a lesson from graph contrastive learning approach to accomplish refined knowledge graph embedding, which alleviates the interference of redundant KG signal to the model and mines the latent semantic information in KG. Massive experimental results on three benchmark datasets prove that KFGAN model dramatically outperforms the current state-of-the-art baselines. The code and experimental datasets will be available at https://github.com/weiwang1992/KFGAN to verify and study for further research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
新手菜鸟发布了新的文献求助10
刚刚
ZZL完成签到,获得积分10
1秒前
晚若旧发布了新的文献求助10
1秒前
1秒前
1秒前
大头牌金枪鱼完成签到,获得积分10
1秒前
2秒前
JinQ完成签到,获得积分10
2秒前
2秒前
坚定冰海完成签到,获得积分10
3秒前
4秒前
KM比比发布了新的文献求助10
4秒前
Rainstorm27完成签到,获得积分10
4秒前
清清完成签到,获得积分20
4秒前
钦钦小豆包完成签到,获得积分10
4秒前
5秒前
hhh完成签到,获得积分20
5秒前
NexusExplorer应助美好蜻蜓采纳,获得10
5秒前
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
5秒前
Hello应助科研通管家采纳,获得30
6秒前
所所应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
吴旭东完成签到,获得积分10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
调皮冰姬应助科研通管家采纳,获得10
6秒前
852应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
寻道图强应助科研通管家采纳,获得50
6秒前
薯薯完成签到,获得积分10
6秒前
思源应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
苗条而大河完成签到,获得积分10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410122
求助须知:如何正确求助?哪些是违规求助? 4527656
关于积分的说明 14112011
捐赠科研通 4442051
什么是DOI,文献DOI怎么找? 2437805
邀请新用户注册赠送积分活动 1429747
关于科研通互助平台的介绍 1407769