Knowledge-aware fine-grained attention networks with refined knowledge graph embedding for personalized recommendation

计算机科学 知识图 嵌入 图形 人工智能 情报检索 理论计算机科学
作者
Wei Wang,Xiaoxuan Shen,Baolin Yi,Huanyu Zhang,Jianfang Liu,Chenyun Dai
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123710-123710 被引量:5
标识
DOI:10.1016/j.eswa.2024.123710
摘要

Recommendation systems aim to provide users with personalized and accurate services by integrating various machine learning technologies. Suffering from the puzzles such as cold-start and data sparsity, recommendation models has received extensive attention by incorporating knowledge graphs as additional supplementary information to effectively solve these problems. More recently, graph neural networks (GNNs) have been adopted to establish knowledge-aware recommendation models and made considerable achievements. Nevertheless, the existing GNN-based approaches are inadequate in the following two aspects: (1) How to achieve sufficient high-order collaborative signals? (2) How to reduce the impact of redundant KG information on representation? To overcome these limitations, we propose a novel framework KFGAN with Knowledge-aware Fine-grained Attention Networks for personalized knowledge-aware recommendation, which captures user's preferences by encoding the relation paths and associated entities and generates refined knowledge graphs to learn the potential semantic information. Specifically, by integrating the high-order collaborative signals of users and items and the structural information of knowledge graph, KFGAN enriches the feature representation of users and items and realizes the consistency and coherence of CF and KG information. Furthermore, KFGAN draws a lesson from graph contrastive learning approach to accomplish refined knowledge graph embedding, which alleviates the interference of redundant KG signal to the model and mines the latent semantic information in KG. Massive experimental results on three benchmark datasets prove that KFGAN model dramatically outperforms the current state-of-the-art baselines. The code and experimental datasets will be available at https://github.com/weiwang1992/KFGAN to verify and study for further research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
haixia发布了新的文献求助10
刚刚
吱哦周发布了新的文献求助10
1秒前
大个应助眼里有星辰采纳,获得10
1秒前
2秒前
香蕉觅云应助Again采纳,获得10
2秒前
bkagyin应助微笑的千山采纳,获得10
4秒前
wonderbgt完成签到,获得积分0
4秒前
6秒前
黙宇循光发布了新的文献求助10
6秒前
6秒前
小二郎应助木棉采纳,获得10
8秒前
少喝水呀完成签到,获得积分10
8秒前
9秒前
微笑的千山完成签到,获得积分10
9秒前
有益发布了新的文献求助10
11秒前
FashionBoy应助nina采纳,获得10
12秒前
12秒前
勇勇发布了新的文献求助10
13秒前
Again发布了新的文献求助10
14秒前
drtianyunhong发布了新的文献求助10
15秒前
15秒前
17秒前
魁梧的鲂发布了新的文献求助10
17秒前
赘婿应助Garry采纳,获得10
18秒前
xuli-888发布了新的文献求助10
18秒前
午马未羊完成签到,获得积分10
18秒前
20秒前
20秒前
20秒前
20秒前
21秒前
勇勇完成签到,获得积分10
22秒前
LF9979完成签到,获得积分20
23秒前
空白完成签到,获得积分10
24秒前
FashionBoy应助安于此生采纳,获得10
25秒前
木棉发布了新的文献求助10
26秒前
27秒前
ouyangshi发布了新的文献求助10
27秒前
Dr_Stars完成签到,获得积分10
27秒前
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313931
求助须知:如何正确求助?哪些是违规求助? 2946299
关于积分的说明 8529491
捐赠科研通 2621940
什么是DOI,文献DOI怎么找? 1434230
科研通“疑难数据库(出版商)”最低求助积分说明 665175
邀请新用户注册赠送积分活动 650738