Knowledge-aware fine-grained attention networks with refined knowledge graph embedding for personalized recommendation

计算机科学 知识图 嵌入 图形 特征学习 可扩展性 机器学习 推荐系统 人工智能 情报检索 理论计算机科学 数据库
作者
Wei Wang,Xiaoxuan Shen,Baolin Yi,Huanyu Zhang,Jianfang Liu,Chao Dai
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123710-123710 被引量:27
标识
DOI:10.1016/j.eswa.2024.123710
摘要

Recommendation systems aim to provide users with personalized and accurate services by integrating various machine learning technologies. Suffering from the puzzles such as cold-start and data sparsity, recommendation models has received extensive attention by incorporating knowledge graphs as additional supplementary information to effectively solve these problems. More recently, graph neural networks (GNNs) have been adopted to establish knowledge-aware recommendation models and made considerable achievements. Nevertheless, the existing GNN-based approaches are inadequate in the following two aspects: (1) How to achieve sufficient high-order collaborative signals? (2) How to reduce the impact of redundant KG information on representation? To overcome these limitations, we propose a novel framework KFGAN with Knowledge-aware Fine-grained Attention Networks for personalized knowledge-aware recommendation, which captures user's preferences by encoding the relation paths and associated entities and generates refined knowledge graphs to learn the potential semantic information. Specifically, by integrating the high-order collaborative signals of users and items and the structural information of knowledge graph, KFGAN enriches the feature representation of users and items and realizes the consistency and coherence of CF and KG information. Furthermore, KFGAN draws a lesson from graph contrastive learning approach to accomplish refined knowledge graph embedding, which alleviates the interference of redundant KG signal to the model and mines the latent semantic information in KG. Massive experimental results on three benchmark datasets prove that KFGAN model dramatically outperforms the current state-of-the-art baselines. The code and experimental datasets will be available at https://github.com/weiwang1992/KFGAN to verify and study for further research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助猪猪hero采纳,获得10
刚刚
刚刚
芋圆葡萄完成签到,获得积分10
1秒前
大气的英姑完成签到,获得积分10
1秒前
FashionBoy应助含糊的茹妖采纳,获得10
1秒前
臆想完成签到,获得积分10
2秒前
3秒前
鬲木发布了新的文献求助20
3秒前
十九完成签到,获得积分10
3秒前
YYY05041123发布了新的文献求助10
4秒前
研友_X89o6n完成签到,获得积分10
4秒前
倾倾若兮发布了新的文献求助30
4秒前
黑球完成签到,获得积分10
5秒前
领导范儿应助GGB采纳,获得10
5秒前
5秒前
在水一方应助kdf采纳,获得10
6秒前
FashionBoy应助子虚一尘采纳,获得10
6秒前
6秒前
6秒前
畅享未来完成签到,获得积分10
7秒前
trq1007发布了新的文献求助10
7秒前
淡定发布了新的文献求助30
7秒前
8秒前
9秒前
Icey发布了新的文献求助10
10秒前
11秒前
aldehyde应助YYD123采纳,获得50
12秒前
汐颜紫雨发布了新的文献求助10
12秒前
SciGPT应助rues011采纳,获得10
12秒前
CodeCraft应助鬲木采纳,获得10
12秒前
kdf完成签到,获得积分10
13秒前
善学以致用应助Yi采纳,获得10
13秒前
TN完成签到 ,获得积分10
13秒前
GGB完成签到,获得积分10
14秒前
遛遛完成签到,获得积分10
14秒前
14秒前
absb发布了新的文献求助10
15秒前
16秒前
完美世界应助信wz采纳,获得10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285299
求助须知:如何正确求助?哪些是违规求助? 4438487
关于积分的说明 13817325
捐赠科研通 4319766
什么是DOI,文献DOI怎么找? 2371149
邀请新用户注册赠送积分活动 1366693
关于科研通互助平台的介绍 1330152