已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Knowledge-aware fine-grained attention networks with refined knowledge graph embedding for personalized recommendation

计算机科学 知识图 嵌入 图形 特征学习 可扩展性 机器学习 推荐系统 人工智能 情报检索 理论计算机科学 数据库
作者
Wei Wang,Xiaoxuan Shen,Baolin Yi,Huanyu Zhang,Jianfang Liu,Chao Dai
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:249: 123710-123710 被引量:27
标识
DOI:10.1016/j.eswa.2024.123710
摘要

Recommendation systems aim to provide users with personalized and accurate services by integrating various machine learning technologies. Suffering from the puzzles such as cold-start and data sparsity, recommendation models has received extensive attention by incorporating knowledge graphs as additional supplementary information to effectively solve these problems. More recently, graph neural networks (GNNs) have been adopted to establish knowledge-aware recommendation models and made considerable achievements. Nevertheless, the existing GNN-based approaches are inadequate in the following two aspects: (1) How to achieve sufficient high-order collaborative signals? (2) How to reduce the impact of redundant KG information on representation? To overcome these limitations, we propose a novel framework KFGAN with Knowledge-aware Fine-grained Attention Networks for personalized knowledge-aware recommendation, which captures user's preferences by encoding the relation paths and associated entities and generates refined knowledge graphs to learn the potential semantic information. Specifically, by integrating the high-order collaborative signals of users and items and the structural information of knowledge graph, KFGAN enriches the feature representation of users and items and realizes the consistency and coherence of CF and KG information. Furthermore, KFGAN draws a lesson from graph contrastive learning approach to accomplish refined knowledge graph embedding, which alleviates the interference of redundant KG signal to the model and mines the latent semantic information in KG. Massive experimental results on three benchmark datasets prove that KFGAN model dramatically outperforms the current state-of-the-art baselines. The code and experimental datasets will be available at https://github.com/weiwang1992/KFGAN to verify and study for further research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助开朗白山采纳,获得10
刚刚
codwest发布了新的文献求助10
4秒前
dandelion完成签到 ,获得积分10
6秒前
6秒前
L同学发布了新的文献求助10
9秒前
C_Cppp完成签到 ,获得积分10
11秒前
万能图书馆应助琪子采纳,获得10
12秒前
浮游应助现实的无声采纳,获得10
13秒前
科研通AI6应助长情白柏采纳,获得10
13秒前
14秒前
完美世界应助聪慧凡雁采纳,获得10
16秒前
16秒前
Latous完成签到,获得积分10
17秒前
淡定翠容发布了新的文献求助10
19秒前
热情的寒梅完成签到,获得积分10
20秒前
Latous发布了新的文献求助10
20秒前
22秒前
体贴自行车完成签到 ,获得积分10
23秒前
干秋白发布了新的文献求助10
25秒前
科研兵发布了新的文献求助10
25秒前
25秒前
25秒前
25秒前
28秒前
Magali发布了新的文献求助20
29秒前
聪慧凡雁发布了新的文献求助10
30秒前
我爱科研发布了新的文献求助10
32秒前
yvonnecao发布了新的文献求助10
33秒前
Akim应助现实的邴采纳,获得10
34秒前
L同学完成签到,获得积分10
34秒前
35秒前
36秒前
36秒前
小研不咸完成签到,获得积分20
38秒前
oddope发布了新的文献求助10
38秒前
淡定翠容发布了新的文献求助10
38秒前
富贵发布了新的文献求助10
39秒前
雪莉完成签到 ,获得积分10
40秒前
41秒前
guo89驳回了Akim应助
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5431845
求助须知:如何正确求助?哪些是违规求助? 4544693
关于积分的说明 14193685
捐赠科研通 4463904
什么是DOI,文献DOI怎么找? 2446904
邀请新用户注册赠送积分活动 1438241
关于科研通互助平台的介绍 1414979