Multi-view X-ray Image Synthesis with Multiple Domain Disentanglement from CT Scans

图像(数学) 领域(数学分析) X射线 计算机科学 计算机视觉 人工智能 核医学 数学 物理 光学 医学 数学分析
作者
Lixing Tan,Shuang Song,Kangneng Zhou,Chengbo Duan,Lanying Wang,Huayang Ren,Linlin Liu,Wei Zhang,Ruoxiu Xiao
出处
期刊:Cornell University - arXiv
标识
DOI:10.1145/3664647.3681154
摘要

X-ray images play a vital role in the intraoperative processes due to their high resolution and fast imaging speed and greatly promote the subsequent segmentation, registration and reconstruction. However, over-dosed X-rays superimpose potential risks to human health to some extent. Data-driven algorithms from volume scans to X-ray images are restricted by the scarcity of paired X-ray and volume data. Existing methods are mainly realized by modelling the whole X-ray imaging procedure. In this study, we propose a learning-based approach termed CT2X-GAN to synthesize the X-ray images in an end-to-end manner using the content and style disentanglement from three different image domains. Our method decouples the anatomical structure information from CT scans and style information from unpaired real X-ray images/ digital reconstructed radiography (DRR) images via a series of decoupling encoders. Additionally, we introduce a novel consistency regularization term to improve the stylistic resemblance between synthesized X-ray images and real X-ray images. Meanwhile, we also impose a supervised process by computing the similarity of computed real DRR and synthesized DRR images. We further develop a pose attention module to fully strengthen the comprehensive information in the decoupled content code from CT scans, facilitating high-quality multi-view image synthesis in the lower 2D space. Extensive experiments were conducted on the publicly available CTSpine1K dataset and achieved 97.8350, 0.0842 and 3.0938 in terms of FID, KID and defined user-scored X-ray similarity, respectively. In comparison with 3D-aware methods ($\pi$-GAN, EG3D), CT2X-GAN is superior in improving the synthesis quality and realistic to the real X-ray images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
DKO253完成签到,获得积分10
2秒前
2秒前
123456完成签到 ,获得积分10
2秒前
可爱的函函应助shiyu采纳,获得10
3秒前
3秒前
木头人发布了新的文献求助10
4秒前
4秒前
段启瑞发布了新的文献求助10
4秒前
殷启维发布了新的文献求助10
5秒前
深情安青应助久久采纳,获得10
5秒前
麻薯完成签到,获得积分20
6秒前
6秒前
震动的白山完成签到 ,获得积分10
6秒前
杨言应助一叶扁舟采纳,获得10
6秒前
DKO253发布了新的文献求助30
6秒前
likexin发布了新的文献求助10
6秒前
6秒前
SciGPT应助追梦小帅采纳,获得10
7秒前
7秒前
希望天下0贩的0应助yyk采纳,获得10
7秒前
8秒前
小雨哥应助651采纳,获得20
8秒前
8秒前
lily2025发布了新的文献求助10
8秒前
9秒前
jie完成签到,获得积分10
10秒前
亘古匆匆应助魔幻的花生采纳,获得30
10秒前
XSY完成签到,获得积分10
10秒前
夕风残照发布了新的文献求助10
10秒前
听筠完成签到,获得积分10
10秒前
11秒前
11秒前
沈剑心发布了新的文献求助10
11秒前
12秒前
科目三应助卢本伟牛逼采纳,获得10
12秒前
平淡的鸿完成签到,获得积分10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Fundamentals of Medical Device Regulations, Fifth Edition(e-book) 300
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
Veterinary Neuroanatomy and Clinical Neurology 200
Handbook of Laboratory Animal Science 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3698106
求助须知:如何正确求助?哪些是违规求助? 3249257
关于积分的说明 9862655
捐赠科研通 2960814
什么是DOI,文献DOI怎么找? 1623705
邀请新用户注册赠送积分活动 768782
科研通“疑难数据库(出版商)”最低求助积分说明 741904