Predicting the price of taxicabs using Artificial Intelligence: A hybrid approach based on clustering and ordinal regression models

聚类分析 序数回归 人工神经网络 人工智能 序数数据 回归分析 计算机科学 统计 计量经济学 机器学习 数学
作者
Bhawana Rathore,Pooja Sengupta,Baidyanath Biswas,Ajay Kumar
出处
期刊:Transportation Research Part E-logistics and Transportation Review [Elsevier BV]
卷期号:185: 103530-103530 被引量:4
标识
DOI:10.1016/j.tre.2024.103530
摘要

With increasing popularity of ride-hailing services, it becomes important to build transparent and explainable pricing models using artificial intelligence (AI). While the literature on this domain is growing steadily, the application of AI in pricing prediction is relatively new. We drew upon the New York City Taxi dataset to build pricing prediction models to bridge this gap. Our contributions are as follows. First, we created unique clusters for yellow and app-based cabs, leading to a dynamic pricing mechanism across different zones in New York City. Second, we converted a prediction problem into a classification problem by transforming the prices into four distinct quartiles. Third, we applied variable importance schemes to generate top predictors in each cluster. Fourth, our study reveals that differential effects of each predictor for cab-pricing across different clusters exist. Fifth, the "congestion surcharge" is significant for only a few clusters, and imposing such surcharges could hurt the overall taxicab industry. In this manner, our study contributes to the academic literature on taxicab pricing by offering transparent and actionable insights for stakeholders and policymakers, informed by robust AI-driven pricing models and empirical analyses of real-world data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunyafei发布了新的文献求助10
刚刚
恣意完成签到 ,获得积分10
刚刚
1秒前
1秒前
斯文的炳完成签到,获得积分10
4秒前
4秒前
学术底层发布了新的文献求助10
5秒前
肥宅快乐水完成签到,获得积分20
5秒前
6秒前
肥肥发布了新的文献求助10
6秒前
小明同學发布了新的文献求助10
6秒前
希望天下0贩的0应助hhhhh采纳,获得10
8秒前
9秒前
9秒前
南亭完成签到,获得积分10
9秒前
9秒前
共享精神应助罗颂子采纳,获得10
10秒前
10秒前
张铁柱完成签到,获得积分10
10秒前
划分发布了新的文献求助20
10秒前
西木发布了新的文献求助10
11秒前
小周发布了新的文献求助10
11秒前
11秒前
wgm发布了新的文献求助10
13秒前
hiipaige发布了新的文献求助30
15秒前
FashionBoy应助张城豪采纳,获得10
15秒前
我是老大应助mkihvgik采纳,获得30
16秒前
仟惠发布了新的文献求助10
16秒前
17秒前
SciGPT应助chenying采纳,获得10
18秒前
hhhhh完成签到,获得积分10
18秒前
18秒前
20秒前
小周完成签到,获得积分20
20秒前
hhhhh发布了新的文献求助10
21秒前
22秒前
22秒前
科研通AI5应助zdy采纳,获得10
24秒前
CHyaa完成签到,获得积分10
24秒前
开放夜南完成签到,获得积分10
26秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737954
求助须知:如何正确求助?哪些是违规求助? 3281511
关于积分的说明 10025689
捐赠科研通 2998263
什么是DOI,文献DOI怎么找? 1645165
邀请新用户注册赠送积分活动 782636
科研通“疑难数据库(出版商)”最低求助积分说明 749882