Recent advances in modelling structure-property correlations in high-entropy alloys

统计物理学 财产(哲学) 高熵合金 计算机科学 材料科学 物理 哲学 冶金 合金 认识论
作者
Akash A. Deshmukh,Raghavan Ranganathan
出处
期刊:Journal of Materials Science & Technology [Elsevier BV]
被引量:4
标识
DOI:10.1016/j.jmst.2024.03.027
摘要

Since antiquity, humans have been involved in designing materials through alloying strategies to meet the ever-growing technological demands. In 2004, this endeavor witnessed a significant breakthrough with the discovery of high-entropy alloys (HEAs) comprising multi-principal elements. Owing to the four "core-effects", these alloys exhibit exceptional properties including better structural stability, high strength and ductility, improved fatigue/fracture toughness, high corrosion and oxidation resistance, superconductivity, magnetic properties, and good thermal properties. Different synthesis routes have been designed and used to meet the properties of interest for particular applications with varying dimensions. However, HEAs are providing new opportunities and challenges for computational modelling of the complex structure-property correlations and in predictions of phase stability necessary for optimum performance of the alloy. Several attempts have been made to understand these alloys by empirical and computational models, and data-driven approaches to accelerate the materials discovery with a desired set of properties. The present review discusses advances and inferences from simulations and models spanning multiple length and time scales explaining a comprehensive set of structure-properties relations. Additionally, the role of machine learning approaches is also reviewed, underscoring the transformative role of computational modelling in unravelling the multifaceted properties and applications of HEAs, and the scope for future efforts in this direction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助艾宁采纳,获得20
刚刚
小鹿发布了新的文献求助10
1秒前
田様应助laxy采纳,获得10
1秒前
2秒前
眼睛大紊发布了新的文献求助10
3秒前
王王牛奶完成签到,获得积分10
3秒前
4秒前
vicky完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
7秒前
眼睛大紊完成签到,获得积分10
9秒前
英俊的铭应助绿大暗采纳,获得10
9秒前
大虫发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
Dina发布了新的文献求助10
11秒前
夏艳青完成签到,获得积分10
11秒前
11秒前
sda发布了新的文献求助10
13秒前
lxy发布了新的文献求助10
13秒前
小马完成签到,获得积分10
14秒前
14秒前
14秒前
酷波er应助甜美的白卉采纳,获得10
15秒前
火山发布了新的文献求助10
15秒前
sda完成签到,获得积分10
16秒前
16秒前
优美元瑶完成签到,获得积分10
17秒前
啦啦啦完成签到 ,获得积分10
17秒前
18秒前
小鲤鱼完成签到,获得积分10
19秒前
栓牛哥发布了新的文献求助10
19秒前
科目三应助ShengQ采纳,获得10
20秒前
22秒前
青灿笑完成签到,获得积分10
23秒前
Moon会努力摘星星完成签到,获得积分10
23秒前
23秒前
yao发布了新的文献求助10
24秒前
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959110
求助须知:如何正确求助?哪些是违规求助? 3505445
关于积分的说明 11123768
捐赠科研通 3237126
什么是DOI,文献DOI怎么找? 1788987
邀请新用户注册赠送积分活动 871477
科研通“疑难数据库(出版商)”最低求助积分说明 802821