Recent advances in modelling structure-property correlations in high-entropy alloys

范围(计算机科学) 高熵合金 计算机科学 材料科学 冶金 合金 程序设计语言
作者
Akash A. Deshmukh,Raghavan Ranganathan
出处
期刊:Journal of Materials Science & Technology [Elsevier BV]
卷期号:204: 127-151 被引量:31
标识
DOI:10.1016/j.jmst.2024.03.027
摘要

Since antiquity, humans have been involved in designing materials through alloying strategies to meet the ever-growing technological demands. In 2004, this endeavor witnessed a significant breakthrough with the discovery of high-entropy alloys (HEAs) comprising multi-principal elements. Owing to the four "core-effects", these alloys exhibit exceptional properties including better structural stability, high strength and ductility, improved fatigue/fracture toughness, high corrosion and oxidation resistance, superconductivity, magnetic properties, and good thermal properties. Different synthesis routes have been designed and used to meet the properties of interest for particular applications with varying dimensions. However, HEAs are providing new opportunities and challenges for computational modelling of the complex structure-property correlations and in predictions of phase stability necessary for optimum performance of the alloy. Several attempts have been made to understand these alloys by empirical and computational models, and data-driven approaches to accelerate the materials discovery with a desired set of properties. The present review discusses advances and inferences from simulations and models spanning multiple length and time scales explaining a comprehensive set of structure-properties relations. Additionally, the role of machine learning approaches is also reviewed, underscoring the transformative role of computational modelling in unravelling the multifaceted properties and applications of HEAs, and the scope for future efforts in this direction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不语发布了新的文献求助10
1秒前
1秒前
2秒前
叮叮叮铛完成签到,获得积分10
3秒前
Jasper应助基拉采纳,获得10
6秒前
7秒前
Alan发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
8秒前
不语完成签到,获得积分10
9秒前
wlscj举报lq求助涉嫌违规
9秒前
changping应助木子雨采纳,获得10
10秒前
贾明灵发布了新的文献求助10
10秒前
10秒前
科研通AI6应助和谐的芷文采纳,获得10
10秒前
blingcmeng发布了新的文献求助10
12秒前
不爱吃魔芋完成签到,获得积分10
12秒前
科研通AI5应助anton采纳,获得10
13秒前
zsy完成签到,获得积分10
13秒前
anhao发布了新的文献求助10
14秒前
14秒前
科研通AI5应助花酒采纳,获得10
14秒前
Chimmy发布了新的文献求助10
15秒前
hibeauty完成签到,获得积分10
16秒前
16秒前
17秒前
18秒前
caihong应助柳如烟采纳,获得10
18秒前
xx发布了新的文献求助10
19秒前
19秒前
文献狗完成签到,获得积分10
20秒前
领导范儿应助Chimmy采纳,获得10
20秒前
小只驳回了英姑应助
21秒前
22秒前
小羽毛k发布了新的文献求助10
22秒前
22秒前
小土豆发布了新的文献求助10
22秒前
23秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5218912
求助须知:如何正确求助?哪些是违规求助? 4392767
关于积分的说明 13677175
捐赠科研通 4255477
什么是DOI,文献DOI怎么找? 2334980
邀请新用户注册赠送积分活动 1332572
关于科研通互助平台的介绍 1286834