已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

3D medical image segmentation based on semi-supervised learning using deep co-training

人工智能 计算机科学 过度拟合 深度学习 分割 图像分割 模式识别(心理学) 一致性(知识库) 可视化 机器学习 人工神经网络
作者
Jingdong Yang,Haoqiu Li,Han Wang,Han Man
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:159: 111641-111641 被引量:2
标识
DOI:10.1016/j.asoc.2024.111641
摘要

In recent years, artificial intelligence has been applied to 3D COVID-19 medical image diagnosis, which reduces detection costs and missed diagnosis rates with higher predictive accuracy, and diagnostic efficiency. However, the limited size and low quality of clinical 3D medical image samples have hindered the segmentation performance of 3D models. Therefore, we propose a 3D medical image segmentation model based on semi-supervised learning using co-training. Multi-view and multi-modal images are generated using spatial flipping and windowing techniques to enhance the spatial diversity of 3D image samples. A pseudo label generation module based on confidence-weights is employed to generate reliable pseudo labels for non-annotated data, thereby increasing the sample size and reducing overfitting. The proposed approach utilizes a three-stage training process: firstly, training a single network based on annotated data; secondly, incorporating non-annotated data to train a dual-modal network and generate pseudo labels; finally, jointly training six models in three dimensions using both annotated and pseudo labels generated from multi-view and multi-modal images, aiming to enhance segmentation accuracy and generalization performance. Additionally, a consistency regularization loss is applied to reduce noises and accelerate convergence of the training. Moreover, a heatmap visualization method is employed to focus on the attention of features at each stage of training, providing effective reference for clinical diagnosis. Experiments were conducted on an open dataset of 3D COVID-19 CT samples and a non-annotated dataset from TCIA, including 771 NIFTI-format CT images from 661 COVID-19 patients. The results of 5-fold cross-validation show that the proposed model achieves a segmentation accuracy of Dice=73.30%, ASD=10.633, Sensitivity=63.00%, and Specificity=99.60%. Compared to various typical semi-supervised learning 3D segmentation models, it demonstrates better segmentation accuracy and generalization performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星上誉完成签到 ,获得积分10
5秒前
10秒前
天天摸鱼完成签到,获得积分10
14秒前
zhao完成签到,获得积分10
24秒前
FashionBoy应助木讷山采纳,获得10
25秒前
25秒前
28秒前
肥鲸鱼发布了新的文献求助10
31秒前
量子星尘发布了新的文献求助10
46秒前
难过板栗完成签到 ,获得积分10
46秒前
47秒前
47秒前
斐嘿嘿发布了新的文献求助10
51秒前
852应助Alice采纳,获得10
51秒前
杜本内发布了新的文献求助10
52秒前
Ruuo616完成签到 ,获得积分10
53秒前
ponytail发布了新的文献求助10
55秒前
longh完成签到,获得积分10
55秒前
悦耳傥完成签到 ,获得积分10
56秒前
斐嘿嘿完成签到,获得积分10
57秒前
Ruri发布了新的文献求助10
59秒前
隐形曼青应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
冷静的小虾米完成签到 ,获得积分10
1分钟前
夜行完成签到,获得积分10
1分钟前
1分钟前
月亮完成签到 ,获得积分10
1分钟前
无花果应助小澜孩采纳,获得10
1分钟前
卡卡完成签到 ,获得积分10
1分钟前
1分钟前
jyy应助lf采纳,获得10
1分钟前
Alice完成签到,获得积分10
1分钟前
1分钟前
白日梦发布了新的文献求助10
1分钟前
木讷山发布了新的文献求助10
1分钟前
1分钟前
果粒橙完成签到 ,获得积分10
1分钟前
123321完成签到 ,获得积分10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976600
求助须知:如何正确求助?哪些是违规求助? 3520689
关于积分的说明 11204470
捐赠科研通 3257316
什么是DOI,文献DOI怎么找? 1798683
邀请新用户注册赠送积分活动 877881
科研通“疑难数据库(出版商)”最低求助积分说明 806613