Unraveling microstructure and mechanical response of an additively manufactured refractory TiVHfNbMo high-entropy alloy

材料科学 微观结构 合金 固溶强化 晶界 高熵合金 成核 吕德斯乐队 冶金 晶界强化 打滑(空气动力学) 沉淀硬化 极限抗拉强度 复合材料 化学 物理 有机化学 热力学
作者
Dingcong Cui,Bojing Guo,Zhongsheng Yang,Xin Liu,Zhijun Wang,Junjie Li,Jincheng Wang,Feng He
出处
期刊:Additive manufacturing [Elsevier]
卷期号:84: 104126-104126 被引量:10
标识
DOI:10.1016/j.addma.2024.104126
摘要

Refractory high-entropy alloys (RHEAs) have attracted considerable interest due to their elevated melting points and exceptional softening resistance. Nevertheless, the ambient-temperature brittleness and inadequate high-temperature oxidation resistance commonly restrict the processability of RHEAs. Direct energy deposition (DED) additive manufacturing technology is ideal for fabricating refractory alloys due to design flexibility and oxygen-free environment. In this work, a novel Ti41V27Hf13Nb13Mo6 RHEA was successfully manufactured by DED, and a comprehensive investigation was conducted to explore the microstructure evolution and mechanical response during tension. The as-deposited RHEAs exhibit a grain-size graded microstructure with a body-centred-cubic (BCC) matrix and precipitates. Increasing laser energy density suppressed the grain boundary precipitation, effectively enhancing the ambient-temperature tensile ductility to ~11.3%. The optimized specimens achieved an unprecedented yield strength of ~1.2 GPa among the DEDed RHEAs, which can be attributed to a significant solid solution strengthening from the volume misfit of 5.03%. We revealed that dislocation interactions maintained the working hardening capacity. Moreover, in-situ characterization indicated that slip transfer, grain rotation, and kinking accommodated the plastic deformation. Crack nucleation was caused by slip inhibition at grain boundaries and dislocation pile-ups at intragranular precipitates. The kink band formation relieved stress concentration induced by intragranular precipitates and promoted a ductile fracture. These exceptional outcomes provide opportunities for additive manufacturing RHEAs and greatly advance understanding of their strengthening and deformation mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jhlz5879完成签到,获得积分10
刚刚
百宝发布了新的文献求助10
刚刚
Ye发布了新的文献求助10
刚刚
lalala应助搞怪网络采纳,获得20
1秒前
FashionBoy应助渝州人采纳,获得10
1秒前
1秒前
2秒前
2秒前
科研通AI5应助xy采纳,获得10
2秒前
曼冬发布了新的文献求助10
2秒前
上官若男应助sjxx采纳,获得10
2秒前
3秒前
守墓人完成签到 ,获得积分10
3秒前
榴莲完成签到,获得积分10
3秒前
对照完成签到 ,获得积分10
3秒前
4秒前
4秒前
初闻完成签到,获得积分10
5秒前
惠惠发布了新的文献求助10
5秒前
慕青应助a1oft采纳,获得10
6秒前
叶十七完成签到,获得积分10
6秒前
汉堡包应助宇_采纳,获得10
6秒前
SciGPT应助H71000A采纳,获得10
6秒前
侦察兵发布了新的文献求助10
7秒前
自然乐松关注了科研通微信公众号
7秒前
zqfxc完成签到,获得积分10
7秒前
sumeiling完成签到,获得积分20
7秒前
朴素的鸡完成签到,获得积分20
8秒前
大七发布了新的文献求助10
8秒前
zzzq完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
请叫我风吹麦浪应助卡卡采纳,获得10
9秒前
传奇3应助起司嗯采纳,获得10
10秒前
remimazolam发布了新的文献求助10
11秒前
在水一方应助悦耳寒松采纳,获得10
11秒前
满座完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794