Unraveling microstructure and mechanical response of an additively manufactured refractory TiVHfNbMo high-entropy alloy

材料科学 微观结构 合金 耐火材料(行星科学) 高熵合金 冶金 复合材料
作者
Dingcong Cui,Bojing Guo,Zhongsheng Yang,Xin Liu,Zhijun Wang,Junjie Li,Jincheng Wang,Feng He
出处
期刊:Additive manufacturing [Elsevier]
卷期号:: 104126-104126 被引量:1
标识
DOI:10.1016/j.addma.2024.104126
摘要

Refractory high-entropy alloys (RHEAs) have attracted considerable interest due to their elevated melting points and exceptional softening resistance. Nevertheless, the ambient-temperature brittleness and inadequate high-temperature oxidation resistance commonly restrict the processability of RHEAs. Direct energy deposition (DED) additive manufacturing technology is ideal for fabricating refractory alloys due to design flexibility and oxygen-free environment. In this work, a novel Ti41V27Hf13Nb13Mo6 RHEA was successfully manufactured by DED, and a comprehensive investigation was conducted to explore the microstructure evolution and mechanical response during tension. The as-deposited RHEAs exhibit a grain-size graded microstructure with a body-centred-cubic (BCC) matrix and precipitates. Increasing laser energy density suppressed the grain boundary precipitation, effectively enhancing the ambient-temperature tensile ductility to ~11.3%. The optimized specimens achieved an unprecedented yield strength of ~1.2 GPa among the DEDed RHEAs, which can be attributed to a significant solid solution strengthening from the volume misfit of 5.03%. We revealed that dislocation interactions maintained the working hardening capacity. Moreover, in-situ characterization indicated that slip transfer, grain rotation, and kinking accommodated the plastic deformation. Crack nucleation was caused by slip inhibition at grain boundaries and dislocation pile-ups at intragranular precipitates. The kink band formation relieved stress concentration induced by intragranular precipitates and promoted a ductile fracture. These exceptional outcomes provide opportunities for additive manufacturing RHEAs and greatly advance understanding of their strengthening and deformation mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wang完成签到,获得积分10
刚刚
Lucas应助快乐的晓刚采纳,获得10
刚刚
1秒前
1秒前
共享精神应助小灰灰采纳,获得10
1秒前
103921wjk完成签到,获得积分10
2秒前
隐形曼青应助君君欧采纳,获得10
2秒前
DAN完成签到,获得积分10
3秒前
下课了吧发布了新的文献求助10
3秒前
英姑应助合适的凝安采纳,获得10
4秒前
华子的五A替身完成签到,获得积分10
5秒前
橙子完成签到 ,获得积分10
6秒前
6秒前
www完成签到 ,获得积分10
6秒前
我是老大应助科研通管家采纳,获得10
7秒前
7秒前
烟花应助科研通管家采纳,获得10
7秒前
鸟斯革发布了新的文献求助30
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
7秒前
花花呀发布了新的文献求助10
7秒前
大壮应助科研通管家采纳,获得10
7秒前
祭天丶易木完成签到,获得积分10
8秒前
meng发布了新的文献求助10
8秒前
9秒前
赵zhao完成签到,获得积分10
10秒前
搜集达人应助二丙采纳,获得10
10秒前
10秒前
果汁狸完成签到 ,获得积分10
11秒前
123发布了新的文献求助10
11秒前
kissssp完成签到,获得积分10
12秒前
郭郭郭完成签到,获得积分10
12秒前
南宫映榕完成签到,获得积分10
12秒前
执着的冬瓜完成签到 ,获得积分10
13秒前
orixero应助兴奋芷采纳,获得10
13秒前
mqbucm完成签到,获得积分10
15秒前
15秒前
Soleil完成签到 ,获得积分10
16秒前
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147171
求助须知:如何正确求助?哪些是违规求助? 2798462
关于积分的说明 7829305
捐赠科研通 2455179
什么是DOI,文献DOI怎么找? 1306639
科研通“疑难数据库(出版商)”最低求助积分说明 627858
版权声明 601567