金属锂
锂(药物)
阳极
聚酰亚胺
阴极
材料科学
集电器
电池(电)
金属
范德瓦尔斯力
图层(电子)
复合材料
光电子学
化学工程
化学
冶金
医学
电极
有机化学
电解质
分子
功率(物理)
物理化学
内分泌学
工程类
物理
量子力学
作者
Chaohui Zhang,Yu‐Jie Guo,Shuang‐Jie Tan,Yuhao Wang,Jun‐Chen Guo,Yifan Tian,Xusheng Zhang,Bozheng Liu,Sen Xin,Juan Zhang,Li‐Jun Wan,Yu‐Guo Guo
出处
期刊:Science Advances
[American Association for the Advancement of Science (AAAS)]
日期:2024-03-29
卷期号:10 (13)
被引量:6
标识
DOI:10.1126/sciadv.adl4842
摘要
The high-capacity advantage of lithium metal anode was compromised by common use of copper as the collector. Furthermore, lithium pulverization associated with “dead” Li accumulation and electrode cracking deteriorates the long-term cyclability of lithium metal batteries, especially under realistic test conditions. Here, we report an ultralight, integrated anode of polyimide-Ag/Li with dual anti-pulverization functionality. The silver layer was initially chemically bonded to the polyimide surface and then spontaneously diffused in Li solid solution and self-evolved into a fully lithiophilic Li-Ag phase, mitigating dendrites growth or dead Li. Further, the strong van der Waals interaction between the bottommost Li-Ag and polyimide affords electrode structural integrity and electrical continuity, thus circumventing electrode pulverization. Compared to the cutting-edge anode-free cells, the batteries pairing LiNi 0.8 Mn 0.1 Co 0.1 O 2 with polyimide-Ag/Li afford a nearly 10% increase in specific energy, with safer characteristics and better cycling stability under realistic conditions of 1× excess Li and high areal-loading cathode (4 milliampere hour per square centimeter).
科研通智能强力驱动
Strongly Powered by AbleSci AI