高原(数学)
植被(病理学)
环境科学
地质学
自然地理学
纬度
盐度
热岩溶
水文学(农业)
大气科学
永久冻土
海洋学
地理
大地测量学
医学
数学分析
数学
岩土工程
病理
作者
Yang Li,Genxu Wang,Shouqin Sun,Lin Shan,P. M. Huang,Jinwang Xiao,Linmao Guo,Jinlong Li,Chunlin Song
摘要
Abstract Comprehensive seasonal observation is essential for accurately quantifying methane (CH 4 ) emissions from ponds and lakes in permafrost regions. Although CH 4 emissions during ice thaw are important and highly variable in high‐latitude freshwater ponds and lakes (north of ∼50°N), their contribution is seldom included in estimates of aquatic‐atmospheric CH 4 exchange across different alpine ecosystems. Here, we characterized annual CH 4 emissions, including emissions during ice thaw, from ponds and lakes across four alpine vegetation zones in the Qinghai‐Tibet Plateau (QTP) permafrost region. We observed significant spatial variability in annual CH 4 emission rates (8.44−421.05 mmol m −2 yr −1 ), CH 4 emission rates during ice thaw (0.26−144.39 mmol m −2 yr −1 ), and the contribution of CH 4 emissions during ice thaw to annual emissions (3−33%) across different vegetation zones. Dissolved oxygen concentration under ice, along with substrate availability and water salinity, played critical roles in influencing CH 4 flux during ice thaw. We estimated annual CH 4 emissions from ponds and lakes in the QTP permafrost region as 0.04 (0.03−0.05) Tg CH 4 yr −1 (median (first quartile−third quartile)), with approximately 20% occurring during ice thaw. Notably, the average areal CH 4 emission rate from ponds and lakes in the QTP permafrost region amounts to only 8% of that from high‐latitude waterbodies, primarily due to the dominance of large saline lakes with lower CH 4 emission rates in the alpine permafrost region. Our findings emphasize the significance of incorporating comprehensive seasonal observation of CH 4 emissions across different vegetation zones in better predicting CH 4 emissions from alpine ponds and lakes.
科研通智能强力驱动
Strongly Powered by AbleSci AI