摘要
Chapter 8 Electrocatalysis Qi Shao, Qi Shao Soochow University, College of Chemistry, Chemical Engineering and Materials Science, Suzhou, 215123 Jiangsu, ChinaSearch for more papers by this author Qi Shao, Qi Shao Soochow University, College of Chemistry, Chemical Engineering and Materials Science, Suzhou, 215123 Jiangsu, ChinaSearch for more papers by this author Book Editor(s):Qi Shao, Qi Shao Soochow University, Suzhou, ChinaSearch for more papers by this authorZhenhui Kang, Zhenhui Kang Soochow University, Suzhou, ChinaSearch for more papers by this authorMingwang Shao, Mingwang Shao Soochow University, Suzhou, ChinaSearch for more papers by this author First published: 05 April 2024 https://doi.org/10.1002/9783527839834.ch8 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary This chapter gives the applications of metastable-phase catalysts for different electrochemical reactions, including HER, OER, ORR, and CO 2 RR. Metastable-phase catalysts, such as metals, oxides, chalcogenides, phosphides, and carbides, are mainly summarized. Future applications of metastable-phase catalysts for electrocatalysis are also discussed. References Kokoskarova , P. and Gulaboski , R. ( 2020 ). Theoretical aspects of a surface electrode reaction coupled with preceding and regenerative chemical steps: square-wave voltammetry of a surface CEC' mechanism . Electroanalysis 32 ( 2 ): 333 – 344 . 10.1002/elan.201900491 CASWeb of Science®Google Scholar Ling , H.H. , Jia , M.L. , Yong , K.L. et al. ( 2019 ). Titanium dioxide encapsulated carbon-nitride nanosheets derived from MXene and melamine-cyanuric acid composite as a multifunctional electrocatalyst for hydrogen and oxygen evolution reaction and oxygen reduction reaction . Applied Catalysis B: Environmental 248 : 366 – 379 . 10.1016/j.apcatb.2019.02.033 Google Scholar Savéant , J.M. ( 2008 ). Molecular catalysis of electrochemical reactions. Mechanistic aspects . Chemical Reviews 108 ( 7 ): 2348 – 2378 . 10.1021/cr068079z CASPubMedWeb of Science®Google Scholar Chang , K. , Hai , X. , and Ye , J.H. ( 2016 ). Transition metal disulfides as noble-metal-alternative co-catalysts for solar hydrogen production . Advanced Energy Materials 6 ( 10 ): 1502555 . 10.1002/aenm.201502555 CASWeb of Science®Google Scholar Bicer , Y. and Dincer , I. ( 2017 ). Life cycle evaluation of hydrogen and other potential fuels for aircrafts . International Journal of Hydrogen Energy 42 ( 16 ): 10722 – 10738 . 10.1016/j.ijhydene.2016.12.119 CASGoogle Scholar Im , K. , Yoo , S.J. , Yoo , K.S. , and Kim , J. ( 2018 ). Facile spray pyrolysis synthesis of various metal-doped MoO 2 microspheres for catalytic partial oxidation of n -dodecane . Catalysis Letters 148 ( 8 ): 2510 – 2515 . 10.1007/s10562-018-2423-3 CASGoogle Scholar Kalamaras , M. and Efstathiou , A.M. ( 2013 ). Hydrogen production technologies: current state and future developments . Conference Papers in Energy 2013 : 690627 . 10.1155/2013/690627 Google Scholar Yan , D.F. , Mebrahtu , C. , Wang , S.Y. , and Palkovits , R. ( 2023 ). Innovative electrochemical strategies for hydrogen production: from electricity input to electricity output . Angewandte Chemie International Edition 135 : e202214333 . 10.1002/ange.202214333 Google Scholar Durst , J. , Siebel , A. , Simon , C. et al. ( 2014 ). New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism . Energy & Environmental Science 7 ( 7 ): 2255 – 2260 . 10.1039/C4EE00440J CASWeb of Science®Google Scholar Jin , Z.Y. , Li , P.P. , Huang , X. et al. ( 2014 ). Three-dimensional amorphous tungsten-doped nickel phosphide microsphere as an efficient electrocatalyst for hydrogen evolution . Journal of Materials Chemistry A 2 ( 43 ): 18593 – 18599 . 10.1039/C4TA04434G CASGoogle Scholar Zhu , L.L. , Lin , H.P. , Li , Y.Y. et al. ( 2016 ). A rhodium/silicon co-electrocatalyst design concept to surpass platinum hydrogen evolution activity at high overpotentials . Nature Communications 7 : 12272 . 10.1038/ncomms12272 CASPubMedWeb of Science®Google Scholar Sheng , W.C. , Myint , M. , Chen , J.G.G. , and Yan , Y.S. ( 2013 ). Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces . Energy & Environmental Science 6 ( 5 ): 1509 – 1512 . 10.1039/c3ee00045a CASWeb of Science®Google Scholar Song , S.D. , Zhang , H.M. , Ma , X.P. et al. ( 2008 ). Electrochemical investigation of electrocatalysts for the oxygen evolution reaction in PEM water electrolyzers . International Journal of Hydrogen Energy 33 ( 19 ): 4955 – 4961 . 10.1016/j.ijhydene.2008.06.039 CASWeb of Science®Google Scholar Song , J.J. , Wei , C. , Huang , Z.F. et al. ( 2020 ). A review on fundamentals for designing oxygen evolution electrocatalysts . Chemical Society Reviews 49 ( 7 ): 2196 – 2214 . 10.1039/C9CS00607A CASPubMedWeb of Science®Google Scholar Chen , D.J. , Chen , C. , Baiyee , Z.M. et al. ( 2015 ). Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices . Chemical Reviews 115 ( 18 ): 9869 – 9921 . 10.1021/acs.chemrev.5b00073 CASPubMedWeb of Science®Google Scholar Parra-Puerto , A. , Ng , K.L. , Fahy , K. et al. ( 2019 ). Supported transition metal phosphides: activity survey for HER, ORR, OER, and corrosion resistance in acid and alkaline electrolytes . ACS Catalysis 9 ( 12 ): 11515 – 11529 . 10.1021/acscatal.9b03359 CASWeb of Science®Google Scholar Li , N. , Wang , W.W. , Song , L.X. et al. ( 2022 ). CO 2 hydrogenation to methanol promoted by Cu and metastable tetragonal Ce x Zr y O z interface . Journal of Energy Chemistry 68 : 771 – 779 . 10.1016/j.jechem.2021.12.053 CASWeb of Science®Google Scholar Over , H. ( 2021 ). Fundamental studies of planar single-crystalline oxide model electrodes (RuO 2 , IrO 2 ) for acidic water splitting . ACS Catalysis 11 ( 14 ): 8848 – 8871 . 10.1021/acscatal.1c01973 CASWeb of Science®Google Scholar Sun , H.M. , Yan , Z.H. , Liu , F.M. et al. ( 2020 ). Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution . Advanced Materials 32 ( 3 ): 1806326 . 10.1002/adma.201806326 CASWeb of Science®Google Scholar Keith , J.A. , Jerkiewicz , G. , and Jacob , T. ( 2010 ). Theoretical investigations of the oxygen reduction reaction on Pt (111) . ChemPhysChem 11 ( 13 ): 2779 – 2794 . 10.1002/cphc.201000286 CASPubMedWeb of Science®Google Scholar Nilekar , A.U. and Mavrikakis , M. ( 2008 ). Improved oxygen reduction reactivity of platinum monolayers on transition metal surfaces . Surface Science 602 ( 14 ): 89 – 94 . 10.1016/j.susc.2008.05.036 CASWeb of Science®Google Scholar Chen , S.Y. and Wang , L.W. ( 2012 ). Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution . Chemistry of Materials 24 ( 18 ): 3659 – 3666 . 10.1021/cm302533s CASWeb of Science®Google Scholar Zhao , J.J. , Fu , C.H. , Ye , K. et al. ( 2022 ). Manipulating the oxygen reduction reaction pathway on Pt-coordinated motifs . Nature Communications 13 ( 1 ): 685 . 10.1038/s41467-022-28346-0 CASPubMedGoogle Scholar Lee , B. , Seo , H.R. , Lee , H.R. et al. ( 2016 ). Critical role of pH evolution of electrolyte in the reaction mechanism for rechargeable zinc batteries . ChemSusChem 9 ( 20 ): 2948 – 2956 . 10.1002/cssc.201600702 CASPubMedWeb of Science®Google Scholar Yang , S. , Verdaguer-Casadevall , A. , Arnarson , L. et al. ( 2018 ). Toward the decentralized electrochemical production of H 2 O 2 : a focus on the catalysis . ACS Catalysis 8 ( 5 ): 4064 – 4081 . 10.1021/acscatal.8b00217 CASWeb of Science®Google Scholar Baes , C.F. , Goeller , H.E. , Olson , J.S. , and Rotty , R.M. ( 1977 ). Carbon dioxide and climate: the uncontrolled experiment: possibly severe consequences of growing CO 2 release from fossil fuels require a much better understanding of the carbon cycle, climate change, and the resulting impacts on the atmosphere . American Scientist 65 ( 3 ): 310 – 320 . Google Scholar Yin , H.Y. , Mao , X.H. , Tang , D.Y. et al. ( 2013 ). Capture and electrochemical conversion of CO 2 to value-added carbon and oxygen by molten salt electrolysis . Energy & Environmental Science 6 ( 5 ): 1538 – 1545 . 10.1039/c3ee24132g CASWeb of Science®Google Scholar Tang , T.M. , Wang , Z.L. , and Guan , J.Q. ( 2022 ). Optimizing the electrocatalytic selectivity of carbon dioxide reduction reaction by regulating the electronic structure of single-atom M-N-C materials . Advanced Functional Materials 32 ( 19 ): 2111504 . 10.1002/adfm.202111504 CASWeb of Science®Google Scholar Lei , Y.R. , Wang , Z. , Bao , A. et al. ( 2023 ). Recent advances on electrocatalytic CO 2 reduction to resources: target products, reaction pathways and typical catalysts . Chemical Engineering Journal 453 : 139663 . 10.1016/j.cej.2022.139663 CASGoogle Scholar Zhao , S.L. , Lu , X.Y. , Wang , L.Z. et al. ( 2019 ). Carbon-based metal-free catalysts for electrocatalytic reduction of nitrogen for synthesis of ammonia at ambient conditions . Advanced Materials 31 ( 13 ): 1805367 . 10.1002/adma.201805367 Web of Science®Google Scholar Gao , T.F. , Kumar , A. , Shang , Z.C. et al. ( 2019 ). Promoting electrochemical conversion of CO 2 to formate with rich oxygen vacancies in nanoporous tin oxides . Chinese Chemical Letters 30 ( 12 ): 2274 – 2278 . 10.1016/j.cclet.2019.07.028 CASGoogle Scholar Cao , H. , Zhang , Z.S. , Chen , J.W. , and Wang , Y.G. ( 2022 ). Potential-dependent free energy relationship in interpreting the electrochemical performance of CO 2 reduction on single atom catalysts . ACS Catalysis 12 ( 11 ): 6606 – 6617 . 10.1021/acscatal.2c01470 CASWeb of Science®Google Scholar Zhang , Y.F. , Zhao , Y. , Wang , C.Y. et al. ( 2019 ). Zn-doped Cu (100) facet with efficient catalytic ability for the CO 2 electroreduction to ethylene . Physical Chemistry Chemical Physics 21 ( 38 ): 21341 – 21348 . 10.1039/C9CP03692J CASPubMedWeb of Science®Google Scholar Song , J.J. , Huang , Z.F. , Pan , L. et al. ( 2018 ). Review on selective hydrogenation of nitroarene by catalytic, photocatalytic and electrocatalytic reactions . Applied Catalysis B: Environmental 227 : 386 – 408 . 10.1016/j.apcatb.2018.01.052 CASWeb of Science®Google Scholar Jin , H. , Song , T. , Paik , U. , and Qiao , S.-Z. ( 2021 ). Metastable two-dimensional materials for electrocatalytic energy conversions . Accounts of Materials Research 2 ( 7 ): 559 – 573 . 10.1021/accountsmr.1c00115 CASGoogle Scholar Fan , Z. and Zhang , H. ( 2016 ). Template synthesis of noble metal nanocrystals with unusual crystal structures and their catalytic applications . Accounts of Chemical Research 49 ( 12 ): 2841 – 2850 . 10.1021/acs.accounts.6b00527 CASPubMedWeb of Science®Google Scholar Fan , Z.X. , Bosman , M. , Huang , Z.Q. et al. ( 2020 ). Heterophase fcc-2H-fcc gold nanorods . Nature Communications 11 ( 1 ): 3293 . 10.1038/s41467-020-17068-w CASPubMedWeb of Science®Google Scholar Huang , X. , Li , S.Z. , Huang , Y.Z. et al. ( 2011 ). Synthesis of hexagonal close-packed gold nanostructures . Nature Communications 2 : 292 . 10.1038/ncomms1291 CASPubMedWeb of Science®Google Scholar Adhikari , H. , Marshall , A.F. , Goldthorpe , I.A. et al. ( 2007 ). Metastability of Au–Ge liquid nanocatalysts: Ge vapor–liquid–solid nanowire growth far below the bulk eutectic temperature . ACS Nano 1 ( 5 ): 415 – 422 . 10.1021/nn7001486 CASPubMedGoogle Scholar Fan , Z.X. , Bosman , M. , Huang , X. et al. ( 2015 ). Stabilization of 4H hexagonal phase in gold nanoribbons . Nature Communications 6 : 7684 . 10.1038/ncomms8684 CASPubMedWeb of Science®Google Scholar Huang , X. , Li , H. , Li , S.Z. et al. ( 2011 ). Synthesis of gold square - like plates from ultrathin gold square sheets: the evolution of structure phase and shape . Angewandte Chemie International Edition 50 ( 51 ): 12245 – 12248 . 10.1002/anie.201105850 CASPubMedWeb of Science®Google Scholar Huang , X. , Li , S.Z. , Wu , S.X. et al. ( 2012 ). Graphene oxide - templated synthesis of ultrathin or tadpole - shaped au nanowires with alternating hcp and fcc domains . Advanced Materials 24 ( 7 ): 979 . 10.1002/adma.201104153 CASPubMedWeb of Science®Google Scholar Chen , Y. , Fan , Z.X. , Luo , Z.M. et al. ( 2017 ). High - yield synthesis of crystal - phase - heterostructured 4H/fcc Au@Pd core–shell nanorods for electrocatalytic ethanol oxidation . Advanced Materials 29 ( 36 ): 1701331 . 10.1002/adma.201701331 CASWeb of Science®Google Scholar Mettela , G. , Sorb , Y.A. , Shukla , A. et al. ( 2017 ). Extraordinarily stable noncubic structures of Au: a high-pressure and-temperature study . Chemistry of Materials 29 ( 4 ): 1485 – 1489 . 10.1021/acs.chemmater.6b03418 CASGoogle Scholar Zheng , H. , Cao , A.J. , Weinberger , C.R. et al. ( 2010 ). Discrete plasticity in sub-10-nm-sized gold crystals . Nature Communications 1 : 144 . 10.1038/ncomms1149 PubMedWeb of Science®Google Scholar Chakraborty , I. , Carvalho , D. , Shirodkar , S.N. et al. ( 2011 ). Novel hexagonal polytypes of silver: growth, characterization and first-principles calculations . Journal of Physics: Condensed Matter 23 ( 32 ): 325401 . 10.1088/0953-8984/23/32/325401 PubMedWeb of Science®Google Scholar Zhelev , D.V. and Zheleva , T.S. ( 2014 ). Silver nanoplates with ground or metastable structures obtained from template-free two-phase aqueous/organic synthesis . Journal of Applied Physics 115 ( 4 ): 044309 . 10.1063/1.4859497 Google Scholar Wetli , E. , Hochstrasser , M. , and Erbudak , M. ( 1997 ). Epitaxial growth of Ag in the hexagonal structure . Surface Science 377 ( 1–3 ): 876 – 881 . 10.1016/S0039-6028(96)01502-6 Google Scholar Liu , X.H. , Luo , J. , and Zhu , J. ( 2006 ). Size effect on the crystal structure of silver nanowires . Nano Letters 6 ( 3 ): 408 – 412 . 10.1021/nl052219n CASPubMedWeb of Science®Google Scholar Huang , T.K. , Cheng , T.H. , Yen , M.Y. et al. ( 2007 ). Growth of Cu nanobelt and Ag belt-like materials by surfactant-assisted galvanic reductions . Langmuir 23 ( 10 ): 5722 – 5726 . 10.1021/la063316e CASPubMedGoogle Scholar Murzakaev , A.M. ( 2017 ). Size dependence of the phase composition of silver nanoparticles formed by the electric explosion of a wire . The Physics of Metals and Metallography 118 ( 5 ): 459 – 465 . 10.1134/S0031918X1705009X CASGoogle Scholar Taneja , P. , Banerjee , R. , Ayyub , P. , and Dey , G.K. ( 2001 ). Observation of a hexagonal (4H) phase in nanocrystalline silver . Physical Review B 64 ( 3 ): 033405 . 10.1103/PhysRevB.64.033405 Google Scholar Liu , C. , Shen , Y. , Zhang , J. et al. ( 2022 ). Multiple twin boundary-regulated metastable Pd for ethanol oxidation reaction . Advanced Energy Materials 12 : 2103505 . 10.1002/aenm.202103505 CASWeb of Science®Google Scholar Ge , Y.Y. , Huang , Z.Q. , Ling , C.Y. et al. ( 2020 ). Phase-selective epitaxial growth of heterophase nanostructures on unconventional 2H-Pd nanoparticles . Journal of the American Chemical Society 142 ( 44 ): 18971 – 18980 . 10.1021/jacs.0c09461 CASPubMedWeb of Science®Google Scholar Kusada , K. , Kobayashi , H. , Yamamoto , T. et al. ( 2013 ). Discovery of face-centered-cubic ruthenium nanoparticles: facile size-controlled synthesis using the chemical reduction method . Journal of the American Chemical Society 135 ( 15 ): 5493 – 5496 . 10.1021/ja311261s CASPubMedWeb of Science®Google Scholar Zheng , Y. , Jiao , Y. , Zhu , Y.H. et al. ( 2016 ). High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst . Journal of the American Chemical Society 138 ( 49 ): 16174 – 16181 . 10.1021/jacs.6b11291 CASPubMedWeb of Science®Google Scholar Dong , Y.T. , Zhang , Z.M. , Yan , W. et al. ( 2023 ). Pb-modified ultrathin RuCu nanoflowers for active, stable, and co-resistant alkaline electrocatalytic hydrogen oxidation . Angewandte Chemie, International Edition e202311722 . PubMedGoogle Scholar Li , L.G. , Liu , S.H. , Zhan , C.H. et al. ( 2023 ). Surface and lattice engineered ruthenium superstructures towards high-performance bifunctional hydrogen catalysis . Energy & Environmental Science 16 ( 1 ): 157 – 166 . 10.1039/D2EE02076A Google Scholar Zhang , J.T. , Liu , X.Z. , Ji , Y.J. et al. ( 2023 ). Atomic-thick metastable phase RhMo nanosheets for hydrogen oxidation catalysis . Nature Communications 14 ( 1 ): 1761 . 10.1038/s41467-023-37406-y CASPubMedGoogle Scholar Shao , Q. , Wang , Y. , Yang , S.Z. et al. ( 2018 ). Stabilizing and activating metastable nickel nanocrystals for highly efficient hydrogen evolution electrocatalysis . ACS Nano 12 ( 11 ): 11625 – 11631 . 10.1021/acsnano.8b06896 CASPubMedGoogle Scholar Geng , S. , Ji , Y. , Yang , S. et al. ( 2023 ). Phosphorus optimized metastable hexagonal-close-packed phase nickel for efficient hydrogen peroxide production in neutral media . Advanced Functional Materials 33 : 2300636 . 10.1002/adfm.202300636 CASWeb of Science®Google Scholar Chen , N. , Zeng , Y. , Li , T. et al. ( 2023 ). Phosphorus doping significantly enhanced the catalytic performance of cobalt-single-atom catalyst for peroxymonosulfate activation and contaminants degradation . Journal of Hazardous Materials 454 : 131480 . 10.1016/j.jhazmat.2023.131480 CASPubMedGoogle Scholar Tan , X. , Geng , S. , Ji , Y. et al. ( 2020 ). Closest packing polymorphism interfaced metastable transition metal for efficient hydrogen evolution . Advanced Materials 32 : 2002857 . 10.1002/adma.202002857 CASWeb of Science®Google Scholar Fang , M.M. , Ji , Y.J. , Geng , S.Z. et al. ( 2022 ). Metastable metal–alloy interface in RuNi nanoplates boosts highly efficient hydrogen electrocatalysis . ACS Applied Nano Materials 5 ( 12 ): 17496 – 17502 . 10.1021/acsanm.2c04789 CASGoogle Scholar Liao , F. , Yin , K. , Ji , Y.J. et al. ( 2023 ). Iridium oxide nanoribbons with metastable monoclinic phase for highly efficient electrocatalytic oxygen evolution . Nature Communications 14 ( 1 ): 1248 . 10.1038/s41467-023-36833-1 CASPubMedGoogle Scholar Wang , Y.T. , Li , H.J. , Zhou , W. et al. ( 2022 ). Structurally disordered RuO 2 nanosheets with rich oxygen vacancies for enhanced nitrate electroreduction to ammonia . Angewandte Chemie International Edition 61 ( 19 ): e202202604 . 10.1002/anie.202202604 CASPubMedWeb of Science®Google Scholar Yao , Q. , Huang , B.L. , Xu , Y. et al. ( 2021 ). A chemical etching strategy to improve and stabilize RuO 2 -based nanoassemblies for acidic oxygen evolution . Nano Energy 84 : 105909 . 10.1016/j.nanoen.2021.105909 CASWeb of Science®Google Scholar Dang , Q. , Lin , H.P. , Fan , Z.L. et al. ( 2021 ). Iridium metallene oxide for acidic oxygen evolution catalysis . Nature Communications 12 ( 1 ): 6007 . 10.1038/s41467-021-26336-2 CASPubMedWeb of Science®Google Scholar Fan , Z.L. , Ji , Y.J. , Shao , Q. et al. ( 2021 ). Extraordinary acidic oxygen evolution on new phase 3R-iridium oxide . Joule 5 ( 12 ): 3221 – 3234 . 10.1016/j.joule.2021.10.002 CASWeb of Science®Google Scholar Yu , H. , Liao , F. , Zhu , W.X. et al. ( 2023 ). Two-dimensional amorphous iridium oxide for acidic oxygen evolution reaction . ChemCatChem 15 : e202300737 . 10.1002/cctc.202300737 CASWeb of Science®Google Scholar Zhang , Y. , Wang , M.W. , Zhu , W.X. et al. ( 2023 ). Metastable hexagonal phase SnO 2 nanoribbons with active edge sites for efficient hydrogen peroxide electrosynthesis in neutral media . Angewandte Chemie International Edition 62 ( 20 ): e202218924 . 10.1002/anie.202218924 CASPubMedWeb of Science®Google Scholar Fan , Z.L. , Ji , Y.J. , Liao , F. et al. ( 2022 ). Unique coupling of nanocrystal hexagonal array and two-dimensional metastable substrate boosts H 2 -production . Nature Communications 13 ( 1 ): 5828 . 10.1038/s41467-022-33512-5 CASPubMedGoogle Scholar Tsai , C. , Chan , K.R. , Nørskov , J.K. , and Abild-Pedersen , F. ( 2015 ). Theoretical insights into the hydrogen evolution activity of layered transition metal dichalcogenides . Surface Science 640 : 133 – 140 . 10.1016/j.susc.2015.01.019 CASWeb of Science®Google Scholar Hinnemann , B. , Moses , P.G. , Bonde , J. et al. ( 2005 ). Biomimetic hydrogen evolution: MoS 2 nanoparticles as catalyst for hydrogen evolution . Journal of the American Chemical Society 127 ( 15 ): 5308 – 5309 . 10.1021/ja0504690 CASPubMedWeb of Science®Google Scholar Lukowski , M.A. , Daniel , A.S. , Meng , F. et al. ( 2013 ). Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS 2 nanosheets . Journal of the American Chemical Society 135 ( 28 ): 10274 – 10277 . 10.1021/ja404523s CASPubMedWeb of Science®Google Scholar Liu , M.Q. , Wang , J.A. , Klysubun , W. et al. ( 2021 ). Interfacial electronic structure engineering on molybdenum sulfide for robust dual-pH hydrogen evolution . Nature Communications 12 ( 1 ): 5260 . 10.1038/s41467-021-25647-8 CASPubMedWeb of Science®Google Scholar Qi , K. , Cui , X.Q. , Gu , L. et al. ( 2019 ). Single-atom cobalt array bound to distorted 1T MoS 2 with ensemble effect for hydrogen evolution catalysis . Nature Communications 10 ( 1 ): 5231 . 10.1038/s41467-019-12997-7 PubMedWeb of Science®Google Scholar Huang , Y.C. , Sun , Y.H. , Zheng , X.L. et al. ( 2019 ). Atomically engineering activation sites onto metallic 1T-MoS 2 catalysts for enhanced electrochemical hydrogen evolution . Nature Communications 11 ( 1 ): 2878 . 10.1038/s41467-020-16709-4 Google Scholar Geng , S.Z. , Ji , Y.J. , Jiang , B.B. et al. ( 2022 ). Two-dimensional confined synthesis of metastable 1T-phase MoS 2 nanosheets for the hydrogen evolution reaction . ACS Applied Nano Materials 5 ( 1 ): 1377 – 1384 . 10.1021/acsanm.1c03941 CASGoogle Scholar Fernando , D. , Nigro , T.A.E. , Dyer , I.D. et al. ( 2016 ). Synthesis and catalytic activity of the metastable phase of gold phosphide . Journal of Solid State Chemistry 242 : 182 – 192 . 10.1016/j.jssc.2016.07.009 CASGoogle Scholar Zhang , Y. , Zhang , D. , Qin , Y.N. et al. ( 2022 ). Ultra-fast phosphating synthesis of metastable crystalline phase-controllable ultra-small MP /CNT (M = Pd, Pt, Ru) for polyalcohol electrooxidation . Journal of Energy Chemistry 72 : 108 – 115 . 10.1016/j.jechem.2022.05.001 CASWeb of Science®Google Scholar Levins , R. ( 1973 ). Fundamental and applied research in agriculture: a dichotomy in biology harms both theory and practice . Science 181 ( 4099 ): 523 – 524 . 10.1126/science.181.4099.523 CASPubMedGoogle Scholar Baek , D.S. , Lee , J. , Kim , J. , and Joo , S.H. ( 2022 ). Metastable phase-controlled synthesis of mesoporous molybdenum carbides for efficient alkaline hydrogen evolution . ACS Catalysis 12 ( 12 ): 7415 – 7426 . 10.1021/acscatal.2c01772 CASGoogle Scholar Schmuecker , S.M. , Clouser , D. , Kraus , T.J. , and Leonard , B.M. ( 2017 ). Synthesis of metastable chromium carbide nanomaterials and their electrocatalytic activity for the hydrogen evolution reaction . Dalton Transactions 46 ( 39 ): 13524 – 13530 . 10.1039/C7DT01404J CASPubMedWeb of Science®Google Scholar Metastable Materials: Synthesis, Characterization and Catalytic Applications ReferencesRelatedInformation