Recognizing facial expressions based on pyramid multi-head grid and spatial attention network

计算机科学 人工智能 棱锥(几何) 网格 计算机视觉 主管(地质) 模式识别(心理学) 面部表情 数学 几何学 地质学 地貌学
作者
Jianyang Zhang,Wei Wang,Xiangyu Li,Yanjiang Han
出处
期刊:Computer Vision and Image Understanding [Elsevier BV]
卷期号:244: 104010-104010 被引量:1
标识
DOI:10.1016/j.cviu.2024.104010
摘要

Facial Expression Recognition (FER) is garnered considerable interest in the field of computer vision. Being a challenging task, it faces some key problems such as inter-class similarity, intra-class variability, and environment sensitivity. Typically, the traditional Convolutional Neural Networks (CNN) are limited by their locality and thus have difficulty learning long-range dependencies between elements in the image, which leads to decreased performance. A innovative expression analysis system that relies on a pyramid multi-head grid and spatial attention network (PMAN) is presented to address these issues. The PMAN is divided into two stages: the initial feature extraction stage, in which the correlations between various facial zones are learned using Multi-head Grid Attention (MGA), and the deep feature learning stage, in which Multi-head Spatial Attention (MSA) is employed in order to improve the model's global attention to facial features. In addition, a unique feature pyramid design is implemented at the deep feature learning stage to diminish the network's sensitivity to face image size. The experiments show that the PMAN performs significantly not only better than the existing methods in terms of CK+, RAF-DB, FER+, and AffectNet but also achieves 100% accuracy on the CK+ dataset without using pre-trained models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
少年旭发布了新的文献求助10
1秒前
1秒前
1秒前
Xdy发布了新的文献求助10
1秒前
科研牛马发布了新的文献求助10
2秒前
bkagyin应助子小孙采纳,获得10
3秒前
君与同行发布了新的文献求助10
3秒前
3秒前
内向面包完成签到,获得积分10
5秒前
尊敬的怡发布了新的文献求助10
5秒前
6秒前
123发布了新的文献求助10
7秒前
君与同行完成签到,获得积分10
8秒前
8秒前
qingmao完成签到,获得积分10
9秒前
10秒前
wanghuihui发布了新的文献求助30
11秒前
LaTeXer应助科研通管家采纳,获得100
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
今后应助科研通管家采纳,获得100
12秒前
思源应助茶马采纳,获得10
12秒前
wop111应助科研通管家采纳,获得20
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
CipherSage应助科研通管家采纳,获得10
12秒前
13秒前
浮游应助科研通管家采纳,获得10
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
SciGPT应助大聪明采纳,获得10
13秒前
14秒前
16秒前
傲娇皮皮虾完成签到 ,获得积分10
16秒前
16秒前
石铜完成签到,获得积分20
17秒前
完美世界应助asdfgh采纳,获得80
17秒前
Criminology34应助wanghuihui采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
Elgar Concise Encyclopedia of Polar Law 520
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4906958
求助须知:如何正确求助?哪些是违规求助? 4184247
关于积分的说明 12993374
捐赠科研通 3950583
什么是DOI,文献DOI怎么找? 2166565
邀请新用户注册赠送积分活动 1185172
关于科研通互助平台的介绍 1091461