“Predicting intraocular lens tilt using a machine learning concept”

倾斜(摄像机) 小学生 医学 镜头(地质) 白内障手术 眼科 人工智能 验光服务 数学 计算机科学 光学 物理 几何学
作者
Klemens Waser,Andreas Honeder,Nino Hirnschall,Haidar Khalil,Leon Pomberger,Peter Laubichler,Siegfried Mariacher,Matthias Bolz
出处
期刊:Journal of Cataract and Refractive Surgery [Ovid Technologies (Wolters Kluwer)]
被引量:2
标识
DOI:10.1097/j.jcrs.0000000000001452
摘要

Objective: Aim of this study was to use a combination of partial least squares regression and a machine learning approach to predict IOL tilt using pre-operative biometry data. Setting: Patients scheduled for cataract surgery at the Kepler University Clinic Linz Design: Prospective single center study Methods: Optical coherence tomography, autorefraction and subjective refraction was performed at baseline and 8 weeks after cataract surgery. In analysis I only one eye per patient was included and a tilt prediction model was generated. In analysis II a pair-wise comparison between right and left eyes was performed. Results: In analysis I 50 eyes of 50 patients were analysed. Difference in amount, orientation and vector from pre- to post-operative lens tilt was -0.13°, 2.14° and 1.20° respectively. A high predictive power (variable importance for projection) for post-operative tilt prediction was found for pre-operative tilt (VIP=2.2), pupil decentration (VIP=1.5), lens thickness (VIP=1.1), axial eye length (VIP=0.9) and pre-operative lens decentration (VIP=0.8). These variables were applied to a machine learning algorithm resulting in an out of bag score of 0.92°. In analysis II 76 eyes of 38 patients were included. The difference of pre- to post-operative IOL tilt of right and left eyes of the same individuum was statistically relevant. Conclusion: Post-operative IOL tilt showed excellent predictability using pre-operative biometry data and a combination of partial least squares regression and a machine learning algorithm. Pre-operative lens tilt, pupil decentration, lens thickness, axial eye length and pre-operative lens decentration were found to be the most relevant parameters for this prediction model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
song24517发布了新的文献求助20
刚刚
顺利琦完成签到,获得积分10
1秒前
李子发布了新的文献求助10
1秒前
pbf完成签到,获得积分10
1秒前
1秒前
lyn发布了新的文献求助30
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
Twikky完成签到,获得积分10
1秒前
柚子皮应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
2秒前
852应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
Akim应助夏末采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
迟大猫应助想学习采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
3秒前
期刊应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
最卷的卷心菜完成签到,获得积分10
3秒前
科研通AI5应助科研通管家采纳,获得50
3秒前
田様应助科研通管家采纳,获得100
3秒前
3秒前
共享精神应助科研通管家采纳,获得10
4秒前
yun尘世应助科研通管家采纳,获得10
4秒前
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
知性的映之完成签到,获得积分10
4秒前
4秒前
小蘑菇应助圈圈采纳,获得10
4秒前
万能图书馆应助七块采纳,获得10
5秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678