已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting intraocular lens tilt using a machine learning concept

倾斜(摄像机) 小学生 医学 镜头(地质) 白内障手术 眼科 人工智能 验光服务 数学 计算机科学 光学 物理 几何学
作者
Klemens Waser,Andreas Honeder,Nino Hirnschall,Haidar Khalil,Leon Pomberger,Peter Laubichler,Siegfried Mariacher,Matthias Bolz
出处
期刊:Journal of Cataract and Refractive Surgery [Ovid Technologies (Wolters Kluwer)]
卷期号:50 (8): 805-809 被引量:5
标识
DOI:10.1097/j.jcrs.0000000000001452
摘要

Purpose: To use a combination of partial least squares regression and a machine learning approach to predict intraocular lens (IOL) tilt using preoperative biometry data. Setting: Kepler University Clinic Linz, Linz, Austria. Design: Prospective single-center study. Methods: Optical coherence tomography, autorefraction, and subjective refraction were performed at baseline and 8 weeks after cataract surgery. In analysis I, only 1 eye per patient was included and a tilt prediction model was generated. In analysis II, a pairwise comparison between right and left eyes was performed. Results: In analysis I, 50 eyes of 50 patients were analyzed. Difference in amount, orientation, and vector from preoperative to postoperative lens tilt was −0.13 degrees, 2.14 degrees, and 1.20 degrees, respectively. A high predictive power (variable importance for projection [VIP]) for postoperative tilt prediction was found for preoperative tilt (VIP = 2.2), pupil decentration (VIP = 1.5), lens thickness (VIP = 1.1), axial eye length (VIP = 0.9), and preoperative lens decentration (VIP = 0.8). These variables were applied to a machine learning algorithm resulting in an out of bag score of 0.92 degrees. In analysis II, 76 eyes of 38 patients were included. The difference of preoperative to postoperative IOL tilt of right and left eyes of the same individual was statistically relevant. Conclusions: Postoperative IOL tilt showed excellent predictability using preoperative biometry data and a combination of partial least squares regression and a machine learning algorithm. Preoperative lens tilt, pupil decentration, lens thickness, axial eye length, and preoperative lens decentration were found to be the most relevant parameters for this prediction model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chiien完成签到 ,获得积分10
1秒前
zcc完成签到,获得积分20
2秒前
初雪完成签到,获得积分10
4秒前
4秒前
独特纸飞机完成签到 ,获得积分10
6秒前
fhg完成签到,获得积分10
6秒前
7秒前
夜倾心完成签到,获得积分10
8秒前
MoonByMoon发布了新的文献求助10
9秒前
AI_Medical完成签到,获得积分10
9秒前
高兴醉薇完成签到 ,获得积分10
9秒前
粽子完成签到,获得积分10
11秒前
chen发布了新的文献求助10
12秒前
沉钧发布了新的文献求助10
14秒前
123456777完成签到 ,获得积分0
16秒前
FashionBoy应助MoonByMoon采纳,获得10
16秒前
我是老大应助开放道天采纳,获得10
17秒前
winnie完成签到,获得积分10
20秒前
顺顺顺应助孤独的小玉采纳,获得10
20秒前
lu2025发布了新的文献求助10
21秒前
葛子文完成签到 ,获得积分10
21秒前
在水一方应助沉钧采纳,获得10
21秒前
1nooooo完成签到 ,获得积分10
24秒前
精明玲完成签到 ,获得积分10
25秒前
LJL完成签到 ,获得积分10
25秒前
笨蛋搞笑女完成签到 ,获得积分10
26秒前
zhdhh完成签到,获得积分10
26秒前
大模型应助大喵采纳,获得10
28秒前
suge完成签到 ,获得积分10
28秒前
粥粥完成签到,获得积分10
28秒前
Leofar完成签到 ,获得积分10
29秒前
张凌完成签到,获得积分10
33秒前
简单寻冬完成签到,获得积分10
33秒前
33秒前
33秒前
wanci应助科研通管家采纳,获得10
34秒前
华仔应助科研通管家采纳,获得10
34秒前
小二郎应助科研通管家采纳,获得10
34秒前
xu应助科研通管家采纳,获得30
34秒前
yyds应助科研通管家采纳,获得10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639380
求助须知:如何正确求助?哪些是违规求助? 4747904
关于积分的说明 15006208
捐赠科研通 4797525
什么是DOI,文献DOI怎么找? 2563511
邀请新用户注册赠送积分活动 1522544
关于科研通互助平台的介绍 1482245