已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Assessing children's outdoor thermal comfort with facial expression recognition: An efficient approach using machine learning

面部表情识别 热舒适性 面部表情 人工智能 表达式(计算机科学) 计算机科学 机器学习 工程类 人机交互 面部识别系统 模式识别(心理学) 物理 气象学 程序设计语言
作者
Yang Li,Xiaohui Nian,Chujian Gu,Pei Deng,Shufan He,Bo Hong
出处
期刊:Building and Environment [Elsevier]
卷期号:258: 111556-111556 被引量:21
标识
DOI:10.1016/j.buildenv.2024.111556
摘要

In this study, children's physiological indices and facial expression during activities with distinct intensities in outdoor open spaces were real-timely measured. Correspondingly, meteorological measurements and questionnaire surveys were conducted to explore change laws of children's physiological feedback, facial expressions, and subjective perception. Then, a predictive model of children's outdoor thermal sensations was built with the coupling relations of physiological indices and facial expressions. Results showed that the skin temperature on the face tended to increase as thermal stress increased but gradually declined with increasing activity intensity. Mean ear temperature (Tear) was the most sensitive, followed by mean cheek temperature (Tcheek). When conducting moderate and vigorous intensity activities, the heart rate (HR) increased significantly within 5 min of exercise and then stabilized. The HR increase in vigorous intensity activities was greater than that during moderate intensity activities. With an increase of thermal stress and activity intensity, the proportion of negative emotions in facial expressions gradually increased. Sadness and disgust expressions both increased significantly, followed by fear and anger. Thus, Tear and negative emotions expressed facially were important indices to predict children's outdoor thermal sensation. Finally, the predictive model for children's outdoor thermal sensation based on facial expression, ear temperature, and HR allowed for non-invasive data collection was built integrating machine learning, and its accuracy reached as high as 97.1%. Our results propose a faster feedback method for children's thermal perception based on facial expression recognition, which can real-timely monitor thermal comfort for children, ensuring their outdoor thermal health and safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烂漫的蜡烛完成签到 ,获得积分10
1秒前
1秒前
tejing1158完成签到 ,获得积分10
2秒前
Shyee完成签到 ,获得积分0
2秒前
fhg完成签到 ,获得积分10
3秒前
3秒前
俏皮含双完成签到,获得积分10
4秒前
扣子完成签到,获得积分10
4秒前
执着的以筠完成签到 ,获得积分10
4秒前
4秒前
will完成签到 ,获得积分10
4秒前
科研通AI6.1应助chenyuns采纳,获得10
5秒前
橘子海完成签到 ,获得积分10
6秒前
柠栀完成签到 ,获得积分10
6秒前
xtz发布了新的文献求助30
7秒前
可爱的函函应助TaoJ采纳,获得10
7秒前
无私糖豆完成签到 ,获得积分20
8秒前
8秒前
能干的阿拉蕾完成签到 ,获得积分10
9秒前
怪怪完成签到 ,获得积分10
9秒前
在水一方应助长颈鹿采纳,获得10
10秒前
搞怪人雄完成签到 ,获得积分10
10秒前
专注冰棍完成签到 ,获得积分10
11秒前
高高的哈密瓜完成签到 ,获得积分10
12秒前
月关完成签到 ,获得积分10
12秒前
吱吱吱吱完成签到 ,获得积分10
13秒前
13秒前
爱听歌的悒完成签到 ,获得积分10
14秒前
小李完成签到 ,获得积分10
14秒前
呆萌的鸿煊完成签到,获得积分10
14秒前
HuTu完成签到 ,获得积分10
15秒前
糕糕完成签到 ,获得积分10
15秒前
沉默听芹完成签到,获得积分10
15秒前
linjt完成签到 ,获得积分10
16秒前
狗十七完成签到 ,获得积分10
16秒前
闪闪蜜粉完成签到 ,获得积分10
17秒前
lpp完成签到 ,获得积分10
17秒前
zhong完成签到 ,获得积分10
17秒前
别整太拗口的完成签到,获得积分10
17秒前
彭于晏应助想听水星记采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779344
求助须知:如何正确求助?哪些是违规求助? 5647025
关于积分的说明 15451677
捐赠科研通 4910704
什么是DOI,文献DOI怎么找? 2642837
邀请新用户注册赠送积分活动 1590518
关于科研通互助平台的介绍 1544853

今日热心研友

注:热心度 = 本日应助数 + 本日被采纳获取积分÷10