Development and validation of prediction models for papillary thyroid cancer structural recurrence using machine learning approaches

医学 接收机工作特性 逻辑回归 内科学 甲状腺癌 甲状腺球蛋白 甲状腺乳突癌 共病 肿瘤科 甲状腺 机器学习 计算机科学
作者
Hongxi Wang,Chao Zhang,Qianrui Li,Tian Tian,Rui Huang,Jiajun Qiu,Rong Tian
出处
期刊:BMC Cancer [BioMed Central]
卷期号:24 (1) 被引量:3
标识
DOI:10.1186/s12885-024-12146-4
摘要

Abstract Background Although papillary thyroid cancer (PTC) patients are known to have an excellent prognosis, up to 30% of patients experience disease recurrence after initial treatment. Accurately predicting disease prognosis remains a challenge given that the predictive value of several predictors remains controversial. Thus, we investigated whether machine learning (ML) approaches based on comprehensive predictors can predict the risk of structural recurrence for PTC patients. Methods A total of 2244 patients treated with thyroid surgery and radioiodine were included. Twenty-nine perioperative variables consisting of four dimensions (demographic characteristics and comorbidities, tumor-related variables, lymph node (LN)-related variables, and metabolic and inflammatory markers) were analyzed. We applied five ML algorithms—logistic regression (LR), support vector machine (SVM), extreme gradient boosting (XGBoost), random forest (RF), and neural network (NN)—to develop the models. The area under the receiver operating characteristic (AUC-ROC) curve, calibration curve, and variable importance were used to evaluate the models’ performance. Results During a median follow-up of 45.5 months, 179 patients (8.0%) experienced structural recurrence. The non-stimulated thyroglobulin, LN dissection, number of LNs dissected, lymph node metastasis ratio, N stage, comorbidity of hypertension, comorbidity of diabetes, body mass index, and low-density lipoprotein were used to develop the models. All models showed a greater AUC (AUC = 0.738 to 0.767) than did the ATA risk stratification (AUC = 0.620, DeLong test: P < 0.01). The SVM, XGBoost, and RF model showed greater sensitivity (0.568, 0.595, 0.676), specificity (0.903, 0.857, 0.784), accuracy (0.875, 0.835, 0.775), positive predictive value (PPV) (0.344, 0.272, 0.219), negative predictive value (NPV) (0.959, 0.959, 0.964), and F1 score (0.429, 0.373, 0.331) than did the ATA risk stratification (sensitivity = 0.432, specificity = 0.770, accuracy = 0.742, PPV = 0.144, NPV = 0.938, F1 score = 0.216). The RF model had generally consistent calibration compared with the other models. The Tg and the LNR were the top 2 important variables in all the models, the N stage was the top 5 important variables in all the models. Conclusions The RF model achieved the expected prediction performance with generally good discrimination, calibration and interpretability in this study. This study sheds light on the potential of ML approaches for improving the accuracy of risk stratification for PTC patients. Trial registration Retrospectively registered at www.chictr.org.cn (trial registration number: ChiCTR2300075574, date of registration: 2023-09-08).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lan199623发布了新的文献求助10
刚刚
kkk发布了新的文献求助10
1秒前
1秒前
1秒前
欧阳振应助沉寂的希望采纳,获得10
1秒前
爱逃不过初心完成签到,获得积分10
1秒前
王多肉完成签到,获得积分10
2秒前
福star高照完成签到,获得积分10
3秒前
3秒前
4秒前
zydaphne完成签到 ,获得积分10
4秒前
5秒前
5秒前
suiFeng完成签到,获得积分10
5秒前
OSASACB完成签到 ,获得积分10
5秒前
syfsyfsyf完成签到,获得积分20
6秒前
LZH完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
Yellue完成签到,获得积分10
7秒前
8秒前
饱满的鑫发布了新的文献求助10
8秒前
8秒前
LZH发布了新的文献求助10
8秒前
简单白风完成签到 ,获得积分10
8秒前
9秒前
9秒前
数学情缘发布了新的文献求助10
9秒前
右右发布了新的文献求助10
10秒前
10秒前
ouou发布了新的文献求助10
11秒前
11秒前
天真囧发布了新的文献求助10
12秒前
完美背包完成签到,获得积分10
12秒前
Tireastani应助hukun100采纳,获得30
12秒前
我先睡了发布了新的文献求助30
12秒前
萱1988发布了新的文献求助10
13秒前
大鲨鱼完成签到 ,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986829
求助须知:如何正确求助?哪些是违规求助? 3529292
关于积分的说明 11244137
捐赠科研通 3267685
什么是DOI,文献DOI怎么找? 1803843
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808600