Development and validation of prediction models for papillary thyroid cancer structural recurrence using machine learning approaches

医学 接收机工作特性 逻辑回归 内科学 甲状腺癌 甲状腺球蛋白 甲状腺乳突癌 共病 肿瘤科 甲状腺 机器学习 计算机科学
作者
Hongxi Wang,Chao Zhang,Qianrui Li,Tian Tian,Rui Huang,Jiajun Qiu,Rong Tian
出处
期刊:BMC Cancer [Springer Nature]
卷期号:24 (1) 被引量:3
标识
DOI:10.1186/s12885-024-12146-4
摘要

Abstract Background Although papillary thyroid cancer (PTC) patients are known to have an excellent prognosis, up to 30% of patients experience disease recurrence after initial treatment. Accurately predicting disease prognosis remains a challenge given that the predictive value of several predictors remains controversial. Thus, we investigated whether machine learning (ML) approaches based on comprehensive predictors can predict the risk of structural recurrence for PTC patients. Methods A total of 2244 patients treated with thyroid surgery and radioiodine were included. Twenty-nine perioperative variables consisting of four dimensions (demographic characteristics and comorbidities, tumor-related variables, lymph node (LN)-related variables, and metabolic and inflammatory markers) were analyzed. We applied five ML algorithms—logistic regression (LR), support vector machine (SVM), extreme gradient boosting (XGBoost), random forest (RF), and neural network (NN)—to develop the models. The area under the receiver operating characteristic (AUC-ROC) curve, calibration curve, and variable importance were used to evaluate the models’ performance. Results During a median follow-up of 45.5 months, 179 patients (8.0%) experienced structural recurrence. The non-stimulated thyroglobulin, LN dissection, number of LNs dissected, lymph node metastasis ratio, N stage, comorbidity of hypertension, comorbidity of diabetes, body mass index, and low-density lipoprotein were used to develop the models. All models showed a greater AUC (AUC = 0.738 to 0.767) than did the ATA risk stratification (AUC = 0.620, DeLong test: P < 0.01). The SVM, XGBoost, and RF model showed greater sensitivity (0.568, 0.595, 0.676), specificity (0.903, 0.857, 0.784), accuracy (0.875, 0.835, 0.775), positive predictive value (PPV) (0.344, 0.272, 0.219), negative predictive value (NPV) (0.959, 0.959, 0.964), and F1 score (0.429, 0.373, 0.331) than did the ATA risk stratification (sensitivity = 0.432, specificity = 0.770, accuracy = 0.742, PPV = 0.144, NPV = 0.938, F1 score = 0.216). The RF model had generally consistent calibration compared with the other models. The Tg and the LNR were the top 2 important variables in all the models, the N stage was the top 5 important variables in all the models. Conclusions The RF model achieved the expected prediction performance with generally good discrimination, calibration and interpretability in this study. This study sheds light on the potential of ML approaches for improving the accuracy of risk stratification for PTC patients. Trial registration Retrospectively registered at www.chictr.org.cn (trial registration number: ChiCTR2300075574, date of registration: 2023-09-08).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
echo完成签到 ,获得积分10
刚刚
在水一方应助lchl采纳,获得10
刚刚
1秒前
小二郎应助wenbo采纳,获得10
1秒前
大力水手完成签到,获得积分0
1秒前
朝夕发布了新的文献求助30
1秒前
科研通AI2S应助JHJ采纳,获得10
1秒前
研途顺利完成签到,获得积分10
1秒前
77完成签到,获得积分10
2秒前
2秒前
U9A关闭了U9A文献求助
3秒前
3秒前
3秒前
4秒前
顾矜应助TONG采纳,获得10
4秒前
mnbvcxz发布了新的文献求助10
4秒前
慕青应助捷jie采纳,获得30
4秒前
木木完成签到,获得积分10
5秒前
桐桐应助infinito采纳,获得10
6秒前
搜集达人应助晓生采纳,获得10
6秒前
6秒前
隐形曼青应助yvonnecao采纳,获得10
7秒前
12发布了新的文献求助10
7秒前
浮游应助弯颈小漏斗采纳,获得10
9秒前
十一完成签到,获得积分10
9秒前
9秒前
张博发布了新的文献求助10
9秒前
10秒前
木灵完成签到,获得积分10
10秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
zxf完成签到,获得积分10
11秒前
自由的箴发布了新的文献求助10
11秒前
12秒前
我是老大应助mnbvcxz采纳,获得10
12秒前
瓜6完成签到 ,获得积分10
12秒前
xiha西希完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5434739
求助须知:如何正确求助?哪些是违规求助? 4547066
关于积分的说明 14205914
捐赠科研通 4467159
什么是DOI,文献DOI怎么找? 2448413
邀请新用户注册赠送积分活动 1439364
关于科研通互助平台的介绍 1416076