清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Development and validation of prediction models for papillary thyroid cancer structural recurrence using machine learning approaches

医学 接收机工作特性 逻辑回归 内科学 甲状腺癌 甲状腺球蛋白 甲状腺乳突癌 共病 肿瘤科 甲状腺 机器学习 计算机科学
作者
Hongxi Wang,Chao Zhang,Qianrui Li,Tian Tian,Rui Huang,Jiajun Qiu,Rong Tian
出处
期刊:BMC Cancer [Springer Nature]
卷期号:24 (1) 被引量:3
标识
DOI:10.1186/s12885-024-12146-4
摘要

Abstract Background Although papillary thyroid cancer (PTC) patients are known to have an excellent prognosis, up to 30% of patients experience disease recurrence after initial treatment. Accurately predicting disease prognosis remains a challenge given that the predictive value of several predictors remains controversial. Thus, we investigated whether machine learning (ML) approaches based on comprehensive predictors can predict the risk of structural recurrence for PTC patients. Methods A total of 2244 patients treated with thyroid surgery and radioiodine were included. Twenty-nine perioperative variables consisting of four dimensions (demographic characteristics and comorbidities, tumor-related variables, lymph node (LN)-related variables, and metabolic and inflammatory markers) were analyzed. We applied five ML algorithms—logistic regression (LR), support vector machine (SVM), extreme gradient boosting (XGBoost), random forest (RF), and neural network (NN)—to develop the models. The area under the receiver operating characteristic (AUC-ROC) curve, calibration curve, and variable importance were used to evaluate the models’ performance. Results During a median follow-up of 45.5 months, 179 patients (8.0%) experienced structural recurrence. The non-stimulated thyroglobulin, LN dissection, number of LNs dissected, lymph node metastasis ratio, N stage, comorbidity of hypertension, comorbidity of diabetes, body mass index, and low-density lipoprotein were used to develop the models. All models showed a greater AUC (AUC = 0.738 to 0.767) than did the ATA risk stratification (AUC = 0.620, DeLong test: P < 0.01). The SVM, XGBoost, and RF model showed greater sensitivity (0.568, 0.595, 0.676), specificity (0.903, 0.857, 0.784), accuracy (0.875, 0.835, 0.775), positive predictive value (PPV) (0.344, 0.272, 0.219), negative predictive value (NPV) (0.959, 0.959, 0.964), and F1 score (0.429, 0.373, 0.331) than did the ATA risk stratification (sensitivity = 0.432, specificity = 0.770, accuracy = 0.742, PPV = 0.144, NPV = 0.938, F1 score = 0.216). The RF model had generally consistent calibration compared with the other models. The Tg and the LNR were the top 2 important variables in all the models, the N stage was the top 5 important variables in all the models. Conclusions The RF model achieved the expected prediction performance with generally good discrimination, calibration and interpretability in this study. This study sheds light on the potential of ML approaches for improving the accuracy of risk stratification for PTC patients. Trial registration Retrospectively registered at www.chictr.org.cn (trial registration number: ChiCTR2300075574, date of registration: 2023-09-08).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助科研通管家采纳,获得10
8秒前
勤恳的饭饭完成签到,获得积分10
9秒前
ee_Liu完成签到,获得积分10
10秒前
妙手回春板蓝根完成签到,获得积分20
38秒前
CChi0923完成签到,获得积分10
1分钟前
乒坛巨人完成签到 ,获得积分10
1分钟前
Shandongdaxiu完成签到 ,获得积分10
1分钟前
舒服的幼荷完成签到,获得积分10
1分钟前
茶包完成签到,获得积分10
1分钟前
Skywings完成签到,获得积分10
1分钟前
明理问柳完成签到,获得积分10
1分钟前
vampire完成签到,获得积分10
1分钟前
斯文败类应助科研通管家采纳,获得10
2分钟前
胖胖橘完成签到 ,获得积分10
2分钟前
1461完成签到 ,获得积分10
2分钟前
ycw7777完成签到,获得积分10
2分钟前
花花完成签到 ,获得积分10
2分钟前
大水完成签到 ,获得积分10
2分钟前
皮皮球完成签到 ,获得积分10
2分钟前
阿泽完成签到 ,获得积分10
2分钟前
Qiuqiu发布了新的文献求助10
3分钟前
chcmy完成签到 ,获得积分0
3分钟前
随影相伴完成签到 ,获得积分10
3分钟前
Sigma完成签到 ,获得积分10
4分钟前
大雁完成签到 ,获得积分10
4分钟前
xue112完成签到 ,获得积分10
4分钟前
nano完成签到 ,获得积分10
4分钟前
zhangzhangzhang完成签到 ,获得积分10
4分钟前
缺粥完成签到 ,获得积分10
4分钟前
4分钟前
三百一十四完成签到 ,获得积分10
5分钟前
称心绮完成签到,获得积分10
5分钟前
vsvsgo完成签到,获得积分10
5分钟前
紫金之巅完成签到 ,获得积分10
5分钟前
开拖拉机的医学僧完成签到 ,获得积分10
5分钟前
wang完成签到,获得积分10
5分钟前
如意的馒头完成签到 ,获得积分10
5分钟前
科研佟完成签到 ,获得积分10
5分钟前
无名草0502完成签到 ,获得积分10
6分钟前
数乱了梨花完成签到 ,获得积分10
6分钟前
高分求助中
中国国际图书贸易总公司40周年纪念文集 大事记1949-1987 2000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
草地生态学 880
Threaded Harmony: A Sustainable Approach to Fashion 799
Basic Modern Theory of Linear Complex Analytic 𝑞-Difference Equations 510
中国有机(类)肥料 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3059669
求助须知:如何正确求助?哪些是违规求助? 2715529
关于积分的说明 7445380
捐赠科研通 2361181
什么是DOI,文献DOI怎么找? 1251224
科研通“疑难数据库(出版商)”最低求助积分说明 607711
版权声明 596466