清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Enhancing Collaborative Information with Contrastive Learning for Session-based Recommendation

会话(web分析) 利用 嵌入 特征学习 计算机科学 杠杆(统计) 图形 平滑的 特征(语言学) 情报检索 光学(聚焦) 机器学习 人工智能 理论计算机科学 万维网 语言学 哲学 物理 计算机安全 光学 计算机视觉
作者
Guojia An,Jing Sun,Yuhan Yang,Fuming Sun
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:61 (4): 103738-103738 被引量:8
标识
DOI:10.1016/j.ipm.2024.103738
摘要

Session-based recommendation (SBR) aims to exploit the session representation generated by combining item embedding and session embedding processes to recommend the next item for an anonymous user. However, most existing studies fail to fully leverage graph structures for hierarchical feature learning during item embedding. Moreover, expert experience is often relied on to set the focus area during session embeddings, which may inevitably introduce noisy information. Additionally, some models introduce inter-session collaborative information for enriching session representations but often overlook the impact of repeated item information within a session. To solve the above problems, we propose Enhancing Collaborative Information with Contrastive Learning for Session-based Recommendation, termed ECCL. Specifically, we construct a residual enhanced multi-level gated graph neural network, which captures the multi-level feature information in the graph structure and alleviates the over-smoothing problem. Meanwhile, the ECCL automatically selects the focus area length by introducing an automatic search module, such that the effect of noisy information during session embedding can be minimized. Moreover, we design a novel repetitive information-aware inter-session similarity learning module that focuses on balancing the positive and negative impacts of repeated items to fully exploit the rich inter-session collaborative information. Extensive experimental results show that the ECCL performs significantly better than other state-of-the-art methods in terms of HR@20, HR@10, MRR@20, and MRR@10, with average enhancements reaching 28.49%, 32.77%, 24.65%, and 24.95%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
16秒前
忘忧Aquarius完成签到,获得积分10
39秒前
龚文亮发布了新的文献求助10
42秒前
1分钟前
知行者完成签到 ,获得积分10
1分钟前
曾经不言完成签到 ,获得积分10
1分钟前
Fern完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
Hello应助111111111采纳,获得10
2分钟前
Jasper应助华东小可爱采纳,获得30
2分钟前
2分钟前
龚文亮完成签到,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
清脆的飞丹完成签到,获得积分10
3分钟前
华仔应助华东小可爱采纳,获得10
3分钟前
黑球发布了新的文献求助10
3分钟前
Bin_Liu完成签到,获得积分20
3分钟前
3分钟前
3分钟前
黑球完成签到,获得积分10
3分钟前
fff完成签到,获得积分20
3分钟前
3分钟前
fff发布了新的文献求助10
3分钟前
4分钟前
4分钟前
4466完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
佳佳应助华东小可爱采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
阿泽完成签到 ,获得积分10
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957065
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111267
捐赠科研通 3234174
什么是DOI,文献DOI怎么找? 1787789
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802264